Reanalysis of ECMWF data for updating the Fire Weather Index for the Indonesia Fire Danger Rating System (InaFDRS)

Author(s):  
Andri Purwandani ◽  
Marina C. G. Frederik ◽  
Reni Sulistyowati ◽  
Lena Sumargana ◽  
Fanny Meliani ◽  
...  
2019 ◽  
Vol 3 (11) ◽  
pp. 25-40 ◽  
Author(s):  
Lourdes Villers-Ruiz ◽  
Emilio Chuvieco ◽  
Inmaculada Aguado

Entre los sistemas de alerta temprana de incendios forestales destaca el desarrollado por el Servicio Forestal de Canadá, denominado Fire Weather Index (FWI). Con el fin de contribuir a la creación de un sistema de alerta temprana, se utilizó este índice para determinar las condiciones de peligro a incendios en el Parque Nacional Malinche a partir de una serie de datos diarios de enero 2004 a octubre 2009 de cinco estaciones meteorológicas automáticas instaladas en el parque a una altitud de 3,000 m, se hicieron los cálculos de los elementos que contiene el índice; para ello, se empleó la versión automatizada del Canadian Forest Fire Danger Rating System. Se realizaron correlaciones y se crearon cuatro categorías con los valores de los componentes, según la frecuencia de incendios y el área siniestrada. También, se señalaron, los valores de temperatura máxima y mínima, humedad relativa y lluvia por categoría. Se constituyeron los umbrales mínimos de gran peligrosidad a incendios para cada uno de los elementos. En el caso del código de humedad de los combustibles finos, el umbral se estableció en 80 puntos; de superarse este valor, el número de incendios por día se incrementa sustancialmente. El código de sequía, el Índice de dispersión inicial del fuego; así como, el Índice acumulado fueron los más significativos en relación a la frecuencia de incendios, por lo que se calculó la probabilidad de estos eventos, para ciertos intervalos de los elementos considerados.


2021 ◽  
Vol 936 (1) ◽  
pp. 012040
Author(s):  
J S Matondang ◽  
H Sanjaya ◽  
R Arifandri

Abstract Tropical peatlands make up almost ten percent of the land surface in Indonesia, making peat fires detrimental not only for global atmospheric carbon levels, but also to public health and socioeconomic activities in the region. Indonesian Fire Danger Rating System (FDRS) was developed based on the Canadian Forest Fire Weather Index System (CFFWIS), using three different fuel codes and three indices representing fire behaviour. Daily Fire Weather Index (FWI) calculation is done by the Meteorological Climatological and Geophysical Agency (BMKG) with data from its synoptic weather stations network. Distribution of such weather stations are sparse, therefore this paper reports on the development of Fire Weather Index calculator on Google Earth Engine, using high resolution weather data, provided by weather model and remote-sensing open datasets. The resulting application is capable of generating daily maps of FWI components to be used by the Indonesian Fire Danger Rating System.


2016 ◽  
Vol 16 (5) ◽  
pp. 1217-1237 ◽  
Author(s):  
Mark C. de Jong ◽  
Martin J. Wooster ◽  
Karl Kitchen ◽  
Cathy Manley ◽  
Rob Gazzard ◽  
...  

Abstract. Wildfires in the United Kingdom (UK) pose a threat to people, infrastructure and the natural environment. During periods of particularly fire-prone weather, wildfires can occur simultaneously across large areas, placing considerable stress upon the resources of fire and rescue services. Fire danger rating systems (FDRSs) attempt to anticipate periods of heightened fire risk, primarily for early-warning and preparedness purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI), is based on the Fire Weather Index (FWI) component of the Canadian Forest FWI System. The MOFSI currently provides daily operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian FWI System. However, it is known that the system has scope for improvement. Here we explore a climatology of the six FWI System components across the UK (i.e. extending to Scotland and Northern Ireland), calculated from daily 2km × 2km gridded numerical weather prediction data and supplemented by long-term meteorological station observations. We used this climatology to develop a percentile-based calibration of the FWI System, optimised for UK conditions. We find this approach to be well justified, as the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile) fire danger situation vary by more than an order of magnitude across the country. Therefore, a simple thresholding of the uncalibrated component values (as is currently applied in the MOFSI) may incur large errors of omission and commission with respect to the identification of periods of significantly elevated fire danger. We evaluate our approach to enhancing UK fire danger rating using records of wildfire occurrence and find that the Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and FWI components of the FWI System generally have the greatest predictive skill for landscape fire activity across Great Britain, with performance varying seasonally and by land cover type. At the height of the most recent severe wildfire period in the UK (2 May 2011), 50 % of all wildfires occurred in areas where the FWI component exceeded the 99th percentile. When all wildfire events during the 2010–2012 period are considered, the 75th, 90th and 99th percentiles of at least one FWI component were exceeded during 85, 61 and 18 % of all wildfires respectively. Overall, we demonstrate the significant advantages of using a percentile-based calibration approach for classifying UK fire danger, and believe that our findings provide useful insights for future development of the current operational MOFSI UK FDRS.


2011 ◽  
Vol 20 (8) ◽  
pp. 963 ◽  
Author(s):  
Xiaorui Tian ◽  
Douglas J. McRae ◽  
Jizhong Jin ◽  
Lifu Shu ◽  
Fengjun Zhao ◽  
...  

The Canadian Forest Fire Weather Index (FWI) system was evaluated for the Daxing'anling region of northern China for the 1987–2006 fire seasons. The FWI system reflected the regional fire danger and could be effectively used there in wildfire management. The various FWI system components were classified into classes (i.e. low to extreme) for fire conditions found in the region. A total of 81.1% of the fires occurred in the high, very high and extreme fire danger classes, in which 73.9% of the fires occurred in the spring (0.1, 9.5, 33.3 and 33.1% in March, April, May and June). Large wildfires greater than 200 ha in area (16.7% of the total) burnt 99.2% of the total burnt area. Lightning was the main ignition source for 57.1% of the total fires. Result show that forest fires mainly occurred in deciduous coniferous forest (61.3%), grass (23.9%) and deciduous broad leaved forest (8.0%). A bimodal fire season was detected, with peaks in May and October. The components of FWI system were good indicators of fire danger in the Daxing'anling region of China and could be used to build a working fire danger rating system for the region.


1998 ◽  
Vol 8 (4) ◽  
pp. 217 ◽  
Author(s):  
MD Flannigan ◽  
BM Wotton ◽  
S Ziga

In Canada, many fire management agencies interpolate indexes of the Fire Weather Index System to estimate the fire danger between weather stations. Difficulties with interpolation arise because summer precipitation can be highly variable over short distances. This variability hinders the usefulness of interpolating precipitation, which is one of the inputs for the Fire Weather Index System. Precipitation estimates from the Canadian Atmospheric Environment Service radar at Upsala, Ontario, were used to determine if this will enable a more accurate measure of the fire danger over the region. Three methods of interpolation of the fire danger between weather stations were compared: first, the standard practice of interpolating fire weather indexes from weather stations to any specified location; second, interpolating the weather variables, temperature, relative humidity, wind speed and precipitation from the weather station to any specified site and then calculating the fire weather indexes; third, interpolating weather variables as in Method 2 above except using the precipitation estimate from the radar and then calculating the fire weather indexes for any specified site. Overall, results indicate that the standard procedure of interpolating the fire weather indexes performs better than the other two methods. However, there are indexes where the other methods perform best (e.g., the fine fuel moisture code is best determined by using the radar precipitation estimation method). Fire management agencies should continue to use the standard practice of interpolating fire weather indexes to estimate fire danger between weather stations. Factors influencing the performance of the radar estimated precipitation method of estimating fire danger are discussed along with potential application of precipitation radar for fire management purposes.


2021 ◽  
Author(s):  
Padraig Flattery ◽  
Klara Finkele ◽  
Paul Downes ◽  
Ferdia O'Leary ◽  
Ciaran Nugent

<p>Since 2006 the Canadian Forest Fire Weather Index System (FWI) has been used operationally at Met Éireann to predict the risk of forest fires in Ireland (Walsh, S, 2006). Although only around 11% or ca 770,000 ha of the total land area of Ireland is afforested, there are also large areas of open mountain and peatlands that are covered in grasses, dwarfshrub and larger woody shrub type vegetation which can provide ready fuel for spring wildfires, when suitable conditions arise. Following winter, much of this vegetation is either dead or has a very low live moisture content, and the flammability of this vegetation can be readily influenced by prevailing weather, most especially following prolonged dry periods. The Department of Agriculture, Food and Marine is the Forest Protection authority in Ireland and issues Fire Danger Notices as part of this work. These notices permit improved preparedness for fire responses and are based on information provided by Met Éireann on the current status of FWI and FWI components using observation data at synoptic stations and the predicted FWI for the next five days ahead based on numerical weather prediction input data.</p><p>The FWI is based on</p><ul><li>three different types of forest fuel, ie how quickly these dry out/get rewetted. These are the Fine Fuels Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC).</li> <li>components based on fire behaviour: the Initial Spread Index (ISI), the Build-up Index (BUI), and the Fire Weather Index (FWI) which represents fire intensity as energy output rate per unit length of fire front. It is then used to determine the Daily Severity Rating (DSR) of the fire danger. </li> </ul><p>Of these components, the FFMC and ISI components have been found to provide the most accurate indication of risk under Irish conditions, based on the fuels involved and ignition patterns observed to date.</p><p>The DSR was based on a climatology of 1971 to 2005 at the time of operational implantation of the FWI at Met Éireann. An updated climatology based on the new reference period of 1990 to 2020 will be shown as well as the change of the 98 percentiles of extreme rating using this new reference period.  </p><p><strong>Walsh, S.</strong> “Implementation in Ireland of the Canadian Forest Fire Weather Index System.” In <em>Making Science Work on the Farm. A Workshop on Decision Support Systems for Irish Agriculture</em>, 120–126. Dublin: AGMET, 2007. </p>


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 838 ◽  
Author(s):  
Fernandes

Forest fire management relies on the fire danger rating to optimize its suite of activities. Limiting fire size is the fire management target whenever minimizing burned area is the primary goal, such as in the Mediterranean Basin. Within the region, wildfire incidence is especially acute in Portugal, a country where fire-influencing anthropogenic and landscape features vary markedly within a relatively small area. This study establishes daily fire weather thresholds associated to transitions to increasingly larger fires for individual Portuguese regions (2001–2011 period), using the national wildfire and Canadian fire weather index (FWI) databases and logistic regression. FWI thresholds variation in relation to population density, topography, land cover, and net primary production (NPP) metrics is examined through regression and cluster analysis. Larger fires occur under increasingly higher fire danger. Resistance to fire spread (the fire-size FWI thresholds) varies regionally following biophysical gradients, and decreases under more complex topography and when NPP and occupation by flammable forest or by shrubland increase. Three main clusters synthesize these relationships and roughly coincide with the western north-central, eastern north-central and southern parts of the country. Quantification of fire-weather relationships can be improved through additional variables and analysis at other spatial scales.


2016 ◽  
Vol 55 (11) ◽  
pp. 2469-2491 ◽  
Author(s):  
Francesca Di Giuseppe ◽  
Florian Pappenberger ◽  
Fredrik Wetterhall ◽  
Blazej Krzeminski ◽  
Andrea Camia ◽  
...  

AbstractA global fire danger rating system driven by atmospheric model forcing has been developed with the aim of providing early warning information to civil protection authorities. The daily predictions of fire danger conditions are based on the U.S. Forest Service National Fire-Danger Rating System (NFDRS), the Canadian Forest Service Fire Weather Index Rating System (FWI), and the Australian McArthur (Mark 5) rating systems. Weather forcings are provided in real time by the European Centre for Medium-Range Weather Forecasts forecasting system at 25-km resolution. The global system’s potential predictability is assessed using reanalysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 yr of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire, and low values correspond to nonobserved events. A more quantitative skill evaluation was performed using the extremal dependency index, which is a skill score specifically designed for rare events. It revealed that the three indices were more skillful than the random forecast to detect large fires on a global scale. The performance peaks in the boreal forests, the Mediterranean region, the Amazon rain forests, and Southeast Asia. The skill scores were then aggregated at the country level to reveal which nations could potentially benefit from the system information to aid decision-making and fire control support. Overall it was found that fire danger modeling based on weather forecasts can provide reasonable predictability over large parts of the global landmass.


2006 ◽  
Vol 15 (1) ◽  
pp. 121 ◽  
Author(s):  
Stephen W. Taylor ◽  
Martin E. Alexander

The present paper reviews the development of the Canadian Forest Fire Danger Rating System (CFFDRS) and its implementation in Canada and elsewhere, and suggests how this experience can be applied in developing fire danger rating systems in other forest or wildland environments. Experience with the CFFDRS suggests that four key scientific, technological, and human elements need to be developed and integrated in a national forest fire danger rating system. First among these is a sustained program of scientific research to develop a system based on relationships between fire weather, fuels, and topography, and fire occurrence, behavior, and impact appropriate to the fire environment. Development of a reliable technical infrastructure to gather, process, and archive fire weather data and to disseminate fire weather forecasts, fire danger information, and fire behavior predictions within operational agencies is also important. Technology transfer and training in the use of fire danger information in fire operations are necessary, as are cooperation and communication between fire management agencies to share resources and set common standards for information, resources, and training. These elements must be appropriate to the needs and capabilities of fire managers, and must evolve as fire management objectives change. Fire danger systems are a form of media; system developers should be careful not to overemphasize scientific and technological elements at the expense of human and institutional factors. Effective fire danger systems are readily assimilated by and influence the organizational culture, which in turn influences the development of new technologies. Most importantly, common vision and a sense of common cause among fire scientists and fire managers are needed for successful implementation of a fire danger rating system.


Sign in / Sign up

Export Citation Format

Share Document