Fast asymmetric cryptosystem based on Boolean product of matrices

Author(s):  
Yeghisabet Alaverdyan ◽  
Gevorg Margarov
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mark Girard ◽  
Martin Plávala ◽  
Jamie Sikora

AbstractGiven two quantum channels, we examine the task of determining whether they are compatible—meaning that one can perform both channels simultaneously but, in the future, choose exactly one channel whose output is desired (while forfeiting the output of the other channel). Here, we present several results concerning this task. First, we show it is equivalent to the quantum state marginal problem, i.e., every quantum state marginal problem can be recast as the compatibility of two channels, and vice versa. Second, we show that compatible measure-and-prepare channels (i.e., entanglement-breaking channels) do not necessarily have a measure-and-prepare compatibilizing channel. Third, we extend the notion of the Jordan product of matrices to quantum channels and present sufficient conditions for channel compatibility. These Jordan products and their generalizations might be of independent interest. Last, we formulate the different notions of compatibility as semidefinite programs and numerically test when families of partially dephasing-depolarizing channels are compatible.


Author(s):  
NAOFUMI MURAKI

Let [Formula: see text] be the class of all algebraic probability spaces. A "natural product" is, by definition, a map [Formula: see text] which is required to satisfy all the canonical axioms of Ben Ghorbal and Schürmann for "universal product" except for the commutativity axiom. We show that there exist only five natural products, namely tensor product, free product, Boolean product, monotone product and anti-monotone product. This means that, in a sense, there exist only five universal notions of stochastic independence in noncommutative probability theory.


2013 ◽  
Author(s):  
Sudheesh K. Rajput ◽  
Naveen K. Nishchal

2021 ◽  
Author(s):  
Chandrasekar V Chandra ◽  
Minda Le

<p>The profile classification module in GPM DPR level-2 algorithm outputs various products  such as rain type classification, melting layer  detection and  identification of  surface snowfall , as well as presence of graupel and hail. Extensive evaluation and validation activities have been performed on these products and have illustrated excellent performance. The latest version of these products is 6X.  With increasing interests  on severe weather  such as hail and  extreme precipitation, in  the next version (version 7), we development a flag to identify hail along the vertical profile using  precipitation type index (PTI).</p><p>Precipitation type index (PTI) plays an important role in a couple of algorithms in the profile classification module. PTI is a value calculated for each dual-frequency profile with precipitation observed by GPM DPR.   DFRm slope, the maximum value of the Zm(Ku) , and  storm top height  are used in calculating PTI. PTI is effective in separating snow and Graupel/Hail  profiles. In version 7, we zoom in further into PTI for  Graupel/ hail profiles and separate  them into graupel and hail profiles with different PTI thresholds. A new Boolean product of “flagHail” is a hail only identifier for each vertical profile.  This hail product will be validated with ground radar products and other DPR products from Trigger module of DPR level-2 algorithm.   In version 7, we make improvements of the surface snowfall algorithm. An adjustment is made accounting for global variability of storm top profiles.. A storm top normalization is introduced to obtain a smooth transition of surface snowfall identification algorithm along varying latitudes globally.</p>


Sign in / Sign up

Export Citation Format

Share Document