Behavior-Based Malware Detection System Approach For Mobile Security Using Machine Learning

Author(s):  
Seema Vanjire ◽  
M. Lakshmi
Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1777
Author(s):  
Muhammad Ali ◽  
Stavros Shiaeles ◽  
Gueltoum Bendiab ◽  
Bogdan Ghita

Detection and mitigation of modern malware are critical for the normal operation of an organisation. Traditional defence mechanisms are becoming increasingly ineffective due to the techniques used by attackers such as code obfuscation, metamorphism, and polymorphism, which strengthen the resilience of malware. In this context, the development of adaptive, more effective malware detection methods has been identified as an urgent requirement for protecting the IT infrastructure against such threats, and for ensuring security. In this paper, we investigate an alternative method for malware detection that is based on N-grams and machine learning. We use a dynamic analysis technique to extract an Indicator of Compromise (IOC) for malicious files, which are represented using N-grams. The paper also proposes TF-IDF as a novel alternative used to identify the most significant N-grams features for training a machine learning algorithm. Finally, the paper evaluates the proposed technique using various supervised machine-learning algorithms. The results show that Logistic Regression, with a score of 98.4%, provides the best classification accuracy when compared to the other classifiers used.


Malware is a serious threat to individuals and users. The security researchers present various solutions, striving to achieve efficient malware detection. Malware attackers devise detection avoidance techniques to escape from detection systems. The key challenge is that growth of malware increases every hour, leading to large damages to users’ privacy. The training process takes much longer time, mining the unnecessary features. Feature Selection is effective in achieving unique feature set in detecting malware. In this paper, we propose a malware detection system using hybrid feature selection approach to detect malware efficiently with a reduced feature set. Machine learning based classification is performed on eight classifiers with two malware datasets. The experiments were done without and with feature selection. The empirical results show that the classification using selected feature set and XGB classifier identifies malware efficiently with an accuracy of 98.9% and 99.26% for the two datasets.


Sign in / Sign up

Export Citation Format

Share Document