scholarly journals An Efficient Malware Detection System using Hybrid Feature Selection Methods

Malware is a serious threat to individuals and users. The security researchers present various solutions, striving to achieve efficient malware detection. Malware attackers devise detection avoidance techniques to escape from detection systems. The key challenge is that growth of malware increases every hour, leading to large damages to users’ privacy. The training process takes much longer time, mining the unnecessary features. Feature Selection is effective in achieving unique feature set in detecting malware. In this paper, we propose a malware detection system using hybrid feature selection approach to detect malware efficiently with a reduced feature set. Machine learning based classification is performed on eight classifiers with two malware datasets. The experiments were done without and with feature selection. The empirical results show that the classification using selected feature set and XGB classifier identifies malware efficiently with an accuracy of 98.9% and 99.26% for the two datasets.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4372 ◽  
Author(s):  
Yan Naung Soe ◽  
Yaokai Feng ◽  
Paulus Insap Santosa ◽  
Rudy Hartanto ◽  
Kouichi Sakurai

With the rapid development and popularization of Internet of Things (IoT) devices, an increasing number of cyber-attacks are targeting such devices. It was said that most of the attacks in IoT environments are botnet-based attacks. Many security weaknesses still exist on the IoT devices because most of them have not enough memory and computational resource for robust security mechanisms. Moreover, many existing rule-based detection systems can be circumvented by attackers. In this study, we proposed a machine learning (ML)-based botnet attack detection framework with sequential detection architecture. An efficient feature selection approach is adopted to implement a lightweight detection system with a high performance. The overall detection performance achieves around 99% for the botnet attack detection using three different ML algorithms, including artificial neural network (ANN), J48 decision tree, and Naïve Bayes. The experiment result indicates that the proposed architecture can effectively detect botnet-based attacks, and also can be extended with corresponding sub-engines for new kinds of attacks.


Author(s):  
Oktay Yildiz ◽  
Ibrahim Alper Doğru

As the use of smartphones increases, Android, as a Linux-based open source mobile operating system (OS), has become the most popular mobile OS in time. Due to the widespread use of Android, malware developers mostly target Android devices and users. Malware detection systems to be developed for Android devices are important for this reason. Machine learning methods are being increasingly used for detection and analysis of Android malware. This study presents a method for detecting Android malware using feature selection with genetic algorithm (GA). Three different classifier methods with different feature subsets that were selected using GA were implemented for detecting and analyzing Android malware comparatively. A combination of Support Vector Machines and a GA yielded the best accuracy result of 98.45% with the 16 selected permissions using the dataset of 1740 samples consisting of 1119 malwares and 621 benign samples.


Author(s):  
Heba F. Eid ◽  
Mostafa A. Salama ◽  
Aboul Ella Hassanien

Feature selection is a preprocessing step to machine learning, leads to increase the classification accuracy and reduce its complexity. Feature selection methods are classified into two main categories: filter and wrapper. Filter methods evaluate features without involving any learning algorithm, while wrapper methods depend on a learning algorithm for feature evaluation. Variety hybrid Filter and wrapper methods have been proposed in the literature. However, hybrid filter and wrapper approaches suffer from the problem of determining the cut-off point of the ranked features. This leads to decrease the classification accuracy by eliminating important features. In this paper the authors proposed a Hybrid Bi-Layer behavioral-based feature selection approach, which combines filter and wrapper feature selection methods. The proposed approach solves the cut-off point problem for the ranked features. It consists of two layers, at the first layer Information gain is used to rank the features and select a new set of features depending on a global maxima classification accuracy. Then, at the second layer a new subset of features is selected from within the first layer redacted data set by searching for a group of local maximum classification accuracy. To evaluate the proposed approach it is applied on NSL-KDD dataset, where the number of features is reduced from 41 to 34 features at the first layer. Then reduced from 34 to 20 features at the second layer, which leads to improve the classification accuracy to 99.2%.


2021 ◽  
Vol 11 (1) ◽  
pp. 1-35
Author(s):  
Amit Singh ◽  
Abhishek Tiwari

Phishing was introduced in 1996, and now phishing is the biggest cybercrime challenge. Phishing is an abstract way to deceive users over the internet. Purpose of phishers is to extract the sensitive information of the user. Researchers have been working on solutions of phishing problem, but the parallel evolution of cybercrime techniques have made it a tough nut to crack. Recently, machine learning-based solutions are widely adopted to tackle the menace of phishing. This survey paper studies various feature selection method and dimensionality reduction methods and sees how they perform with machine learning-based classifier. The selection of features is vital for developing a good performance machine learning model. This work is comparing three broad categories of feature selection methods, namely filter, wrapper, and embedded feature selection methods, to reduce the dimensionality of data. The effectiveness of these methods has been assessed on several machine learning classifiers using k-fold cross-validation score, accuracy, precision, recall, and time.


Sign in / Sign up

Export Citation Format

Share Document