Dynamic Modeling of Spur Gear with Spalling Fault Considering Manufacture Pitch Error

Author(s):  
Chen Qiuyuan ◽  
Wang Liming ◽  
Shao Yimin ◽  
Ding Xiaoxi ◽  
Long Guorong
2021 ◽  
Author(s):  
Lizhuang Tao ◽  
De Tian ◽  
Shize Tang ◽  
Xiaoxuan Wu ◽  
Bei Li

Abstract Gearbox is commonly regarded as the most important power section of wind turbines which has been widely valued for its high malfunction rate. Gear fault researches mainly include wearing, pitting, spalling, breakage, falling off, etc, while little attention was paid to tooth Flank Pitch Error(FPE). Taking a single-stage parallel shaft spur gear as the research object, an 8-DOF gear transmission model and the FPE model were established in this paper and the gear’s time-varying meshing stiffness (TVMS) models with & without tooth FPE were obtained respectively, which the dynamic models with various tooth FPE values under different rotating speeds were simulated after. The simulation results showed that the TVMS mathematical model proposed in the paper under tooth FPE is practical at both low and high rotating speeds. Under the FPE model, side-bands are formed around each multiple of meshing frequency whose peaks are distributed by a fixed fault characteristic frequency ffp interval. The gearbox vibrates severely as the tooth FPE values and rotational speed grow. The peak value of the vibration signal is about 3 times that in case of fault-free state when the FPE value reaches 0.001rad, thus the impact of FPE on gearboxes cannot be neglected.


Author(s):  
Changyin Wei ◽  
Jingang Wang ◽  
Hai Liu ◽  
Yong Chen ◽  
Kunqi Ma ◽  
...  

The involute spur gear system has been widely utilized in the mechanical transmission domain, and the control of the acceleration noise of the involute spur gear system has become the key technology to solve the NVH performance of the power transmission system, especially in the automobile industry. In the process of the gear meshing, the unavoidable acceleration noise of the involute spur gear system is mainly caused by the meshing stiffness and error excitation due to the structural parameters. Therefore, the investigation on the effects of structure parameters on acceleration noise of the involute spur gear system is necessary. In this paper, the numerical model for predicting the acceleration noise of the involute spur gear system has been established. The simulation results of the acceleration noise were compared with the experimental results, and the errors between these two results were only 2.9%, within permission. The effects of structure parameters including base pitch error and pressure angle on the acceleration noise of the involute spur gear system have been discussed. Results showed that increasing the base pitch error, the acceleration noise level of the involute spur gear increased, and the gap of the noise level between different base pitch errors narrowed according to the increase of gear load and rotation speed. Increasing the pressure angle also increased the acceleration noise level, however, the gap between different pressure angles remained the same regardless the variations of gear load and rotation speed, which was different than the variations of base pitch error.


2005 ◽  
Vol 48 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Matthew Watson ◽  
Carl Byington ◽  
Douglas Edwards ◽  
Sanket Amin

2018 ◽  
Vol 23 (4) ◽  
pp. 774-799 ◽  
Author(s):  
Charles C. Driver ◽  
Manuel C. Voelkle

Sign in / Sign up

Export Citation Format

Share Document