Analysis of the relationship between switching frequency and sub-module capacitor unbalanced voltage for a modular multilevel converter

Author(s):  
Yalong Li ◽  
Edward A. Jones ◽  
Fred Wang
Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 134 ◽  
Author(s):  
Muhammad Ali ◽  
Muhammad Khan ◽  
Jianming Xu ◽  
Muhammad Faiz ◽  
Yaqoob Ali ◽  
...  

This paper presents a comparative analysis of a new topology based on an asymmetric hybrid modular multilevel converter (AHMMC) with recently proposed multilevel converter topologies. The analysis is based on various parameters for medium voltage-high power electric traction system. Among recently proposed topologies, few converters have been analysed through simulation results. In addition, the study investigates AHMMC converter which is a cascade arrangement of H-bridge with five-level cascaded converter module (FCCM) in more detail. The key features of the proposed AHMMC includes: reduced switch losses by minimizing the switching frequency as well as the components count, and improved power factor with minimum harmonic distortion. Extensive simulation results and low voltage laboratory prototype validates the working principle of the proposed converter topology. Furthermore, the paper concludes with the comparison factors evaluation of the discussed converter topologies for medium voltage traction applications.


2019 ◽  
Vol 9 (3) ◽  
pp. 551
Author(s):  
Seyed Hakimi ◽  
Amin Hajizadeh

This paper develops modeling and describes a control strategy for a modular multilevel converter (MMC) for grid-connected renewable energy systems. The proposed model can be used to simulate MMC activity during normal and faulty situations. Firstly, a dynamic model of a grid-connected MMC (GC-MMC), based upon the symmetrical component of voltages and currents, was designed. Then an adaptive robust control approach was established in order to follow the reference currents of the converter and stabilize the submodule (SM) capacitor voltage. The positive and negative sequences of reference currents that were given from the demanded active and reactive power during grid voltage disturbance and a normal situation were then utilized in control loops. Finally, the numerical results for the performance of the MMC throughout voltage sag conditions and the effect of uncertainties on the filter parameters during changing power demands were evaluated. The results specified that the current control strategy is more potent under voltage sag situations and able to fulfill the stability requirements of the MMC.


Sign in / Sign up

Export Citation Format

Share Document