Adaptive and Fast State of Health Estimation Method for Lithium-ion Batteries Using Online Complex Impedance and Artificial Neural Network

Author(s):  
Zhiyong Xia ◽  
Jaber A. Abu Qahouq
2021 ◽  
Vol 40 ◽  
pp. 102768
Author(s):  
Sangheon Lee ◽  
Seongho Han ◽  
Kyoung Hwan Han ◽  
Youngju Kim ◽  
Samarth Agarwal ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7521
Author(s):  
Shaheer Ansari ◽  
Afida Ayob ◽  
Molla Shahadat Hossain Lipu ◽  
Aini Hussain ◽  
Mohamad Hanif Md Saad

Remaining useful life (RUL) is a crucial assessment indicator to evaluate battery efficiency, robustness, and accuracy by determining battery failure occurrence in electric vehicle (EV) applications. RUL prediction is necessary for timely maintenance and replacement of the battery in EVs. This paper proposes an artificial neural network (ANN) technique to predict the RUL of lithium-ion batteries under various training datasets. A multi-channel input (MCI) profile is implemented and compared with single-channel input (SCI) or single input (SI) with diverse datasets. A NASA battery dataset is utilized and systematic sampling is implemented to extract 10 sample values of voltage, current, and temperature at equal intervals from each charging cycle to reconstitute the input training profile. The experimental results demonstrate that MCI profile-based RUL prediction is highly accurate compared to SCI profile under diverse datasets. It is reported that RMSE for the proposed MCI profile-based ANN technique is 0.0819 compared to 0.5130 with SCI profile for the B0005 battery dataset. Moreover, RMSE is higher when the proposed model is trained with two datasets and one dataset, respectively. Additionally, the importance of capacity regeneration phenomena in batteries B0006 and B0018 to predict battery RUL is investigated. The results demonstrate that RMSE for the testing battery dataset B0005 is 3.7092, 3.9373 when trained with B0006, B0018, respectively, while it is 3.3678 when trained with B0007 due to the effect of capacity regeneration in B0006 and B0018 battery datasets.


2021 ◽  
Author(s):  
J.P. Gaviria-Cardona ◽  
Michael Guzman-De Las Salas ◽  
Nicolas Montoya-Escobar ◽  
Whady Florez-Escobar ◽  
Raul Valencia-Cardona ◽  
...  

2020 ◽  
Vol 10 (21) ◽  
pp. 7836
Author(s):  
Cher Ming Tan ◽  
Preetpal Singh ◽  
Che Chen

Inaccurate state-of-health (SoH) estimation of battery can lead to over-discharge as the actual depth of discharge will be deeper, or a more-than-necessary number of charges as the calculated SoC will be underestimated, depending on whether the inaccuracy in the maximum stored charge is over or under estimated. Both can lead to increased degradation of a battery. Inaccurate SoH can also lead to the continuous use of battery below 80% actual SoH that could lead to catastrophic failures. Therefore, an accurate and rapid on-line SoH estimation method for lithium ion batteries, under different operating conditions such as varying ambient temperatures and discharge rates, is important. This work develops a method for this purpose, and the method combines the electrochemistry-based electrical model and semi-empirical capacity fading model on a discharge curve of a lithium-ion battery for the estimation of its maximum stored charge capacity, and thus its state of health. The method developed produces a close form that relates SoH with the number of charge-discharge cycles as well as operating temperatures and currents, and its inverse application allows us to estimate the remaining useful life of lithium ion batteries (LiB) for a given SoH threshold level. The estimation time is less than 5 s as the combined model is a closed-form model, and hence it is suitable for real time and on-line applications.


2021 ◽  
Vol 12 (4) ◽  
pp. 256
Author(s):  
Yi Wu ◽  
Wei Li

Accurate capacity estimation can ensure the safe and reliable operation of lithium-ion batteries in practical applications. Recently, deep learning-based capacity estimation methods have demonstrated impressive advances. However, such methods suffer from limited labeled data for training, i.e., the capacity ground-truth of lithium-ion batteries. A capacity estimation method is proposed based on a semi-supervised convolutional neural network (SS-CNN). This method can automatically extract features from battery partial-charge information for capacity estimation. Furthermore, a semi-supervised training strategy is developed to take advantage of the extra unlabeled sample, which can improve the generalization of the model and the accuracy of capacity estimation even in the presence of limited labeled data. Compared with artificial neural networks and convolutional neural networks, the proposed method is demonstrated to improve capacity estimation accuracy.


Sign in / Sign up

Export Citation Format

Share Document