fast state
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3959
Author(s):  
Krzysztof Zarzycki ◽  
Maciej Ławryńczuk

This work is concerned with an original ball-on-plate laboratory process. First, a simplified process model based on state–space process description is derived. Next, a fast state–space MPC algorithm is discussed. Its main advantage is computational simplicity: the manipulated variables are found on-line using explicit formulas with parameters calculated off-line; no real-time optimization is necessary. Software and hardware implementation details of the considered MPC algorithm using the STM32 microcontroller are presented. Tuning of the fast MPC algorithm is discussed. To show the efficacy of the MPC algorithm, it is compared with the classical PID and LQR controllers.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 21112-21122
Author(s):  
Xi He ◽  
Chang Li ◽  
Mingdi Du ◽  
Heng Dong ◽  
Peng Li

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4488
Author(s):  
Chun Wang ◽  
Minghao Geng ◽  
Qingshan Xu ◽  
Haixiang Zang

Integrated electrical and heating networks (IEHNs) effectively improve energy utilization efficiency, reduce environmental pollution and realize sustainable development of energy. To realize the accurate, comprehensive and fast perception of the integrated electrical and heating networks, it is necessary to build a state estimation model. However, the robust state estimator of IEHNs based on the temperature drop equation, flow balance equation and power balance equation still have the problems of convergence and low computational efficiency. In this paper, a fast state estimation method based on weighted least absolute value is proposed, which makes partition calculation of ring-shaped heating network and radiant heating network under certain assumptions. Simulation results show that the method improves the efficiency of the robust state estimator on the premise of high accuracy.


2020 ◽  
Vol 53 (20) ◽  
pp. 204001 ◽  
Author(s):  
M Guţă ◽  
J Kahn ◽  
R Kueng ◽  
J A Tropp

2020 ◽  
Vol 492 (3) ◽  
pp. 3107-3127 ◽  
Author(s):  
Adrian B Lucy ◽  
J L Sokoloski ◽  
U Munari ◽  
Nirupam Roy ◽  
N Paul M Kuin ◽  
...  

ABSTRACT How are accretion discs affected by their outflows? To address this question for white dwarfs accreting from cool giants, we performed optical, radio, X-ray, and ultraviolet observations of the outflow-driving symbiotic star MWC 560 (≡V694 Mon) during its 2016 optical high state. We tracked multi-wavelength changes that signalled an abrupt increase in outflow power at the initiation of a months-long outflow fast state, just as the optical flux peaked: (1) an abrupt doubling of Balmer absorption velocities; (2) the onset of a 20 μJy per month increase in radio flux; and (3) an order-of-magnitude increase in soft X-ray flux. Juxtaposing to prior X-ray observations and their coeval optical spectra, we infer that both high-velocity and low-velocity optical outflow components must be simultaneously present to yield a large soft X-ray flux, which may originate in shocks where these fast and slow absorbers collide. Our optical and ultraviolet spectra indicate that the broad absorption-line gas was fast, stable, and dense (≳106.5  cm−3) throughout the 2016 outflow fast state, steadily feeding a lower density (≲105.5 cm−3) region of radio-emitting gas. Persistent optical and ultraviolet flickering indicate that the accretion disc remained intact. The stability of these properties in 2016 contrasts to their instability during MWC 560’s 1990 outburst, even though the disc reached a similar accretion rate. We propose that the self-regulatory effect of a steady fast outflow from the disc in 2016 prevented a catastrophic ejection of the inner disc. This behaviour in a symbiotic binary resembles disc/outflow relationships governing accretion state changes in X-ray binaries.


Sign in / Sign up

Export Citation Format

Share Document