Fundamental Switching Frequency Pulse Width Modulation of Nine-Level Current-fed Multilevel Converter for Solar Application

Author(s):  
K. Gnanasambandam ◽  
Akshay K. Rathore ◽  
Dipti Srinivasan ◽  
Jose Rodriguez
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3656
Author(s):  
Li-Chuan Tang ◽  
Shyr-Long Jeng ◽  
Edward-Yi Chang ◽  
Wei-Hua Chieng

In this paper, we develop a variable-frequency pulse width modulation (VFPWM) circuit for input control of 6.78-MHz resonant wireless power transfer (WPT) systems. The zero-voltage switching control relies on the adjustments of both duty cycle and switching frequency for the class-E amplifier used in the WPT as the power transmission unit. High-frequency pulse wave modulation integrated circuits exist, but some have insufficiently high frequency or unfavorable resolution for duty cycle tuning. The novelty of this work is the VFPWM circuit design that we put together. A voltage-controlled oscillator (VCO) of radio frequency and capacitor-coupled difference amplifiers are used to simultaneously perform the frequency and duty cycle tuning required in resonant WPT applications. Different circuit topologies of VFPWM are compared analytically and numerically. The most favorable circuit topology, enabling independent control of the frequency and duty cycle, is employed in experiments. The experimental results demonstrate the validity of the novel VFPWM, which is capable of operating at 6.78 MHz and has a duty ratio adjustable from 20% to 45% of the range applicable in the resonant WPT applications.


2017 ◽  
Vol 32 (11) ◽  
pp. 8593-8605 ◽  
Author(s):  
Hussain A. Attia ◽  
Tan Kheng Suan Freddy ◽  
Hang Seng Che ◽  
Wooi Ping Hew ◽  
Ahmad H. El Khateb

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1998
Author(s):  
Shunbin Wu ◽  
Xinhua Guo ◽  
Rongkun Wang ◽  
Yulong Liu ◽  
Liaoyuan Lin ◽  
...  

The four-switch three-phase inverters have become an effective approach for fault-tolerant reconstruction and operation of the six-switch three-phase topology. However, the conventional control strategy for four-switch three-phase inverters can result in a large number of current harmonic components, high electromagnetic acoustic noise, and electromagnetic interference (EMI). Therefore, this paper proposes a random switching frequency pulse width modulation method under the centrosymmetry period with a two-state Markov chain based on four-switch three-phase inverters (RSFPWM-CPTMC). In this method, random numbers are optimized and evenly distributed on both sides of the center frequency within a specific frequency bandwidth range, which significantly reduces the current harmonics and EMI at the switching frequency and frequency multiplication. The spectral characteristics generated by the random switching frequency under the centrosymmetry period with the two-state Markov chain are evaluated and compared to that provided by the traditional fixed switching frequency pulse width modulation (FSFPWM). Simulations and experiments are carried out to illustrate the superiority of the proposal.


2020 ◽  
Vol 11 (1) ◽  
pp. 137
Author(s):  
Quoc Dung Phan ◽  
Guillaume Gateau ◽  
Phu Cong Nguyen ◽  
Marc Cousineau ◽  
Huu Phuc To ◽  
...  

This paper proposes a fast, decentralized method for self-aligning the carriers of a multiphase/multilevel converter operating on the basis of phase-shifted pulse width modulation or level-shifted pulse width modulation. In the proposed method, each cell of the converter synchronizes and updates simultaneously its own carrier angle or carrier level based on the information shared with its neighboring cell, such as its angle/level, its index number, and the total number of activated cells of the converter. Different from the conventional decentralized method (with basic and modified updating rules), which requires some conditions in terms of cell number and initial carrier angles to start up and operate properly, the proposed method can be applied to the system with any number of cells and does not require special conditions of initial carrier angles. Further, while the conventional method needs an iteration process to adjust the inter-carrier phase-shifts and can be applied only to a multiphase converter which uses phase-shifted pulse width modulation, the proposed method offers an accurate and fast alignment of phases (for phase-shifted pulse width modulation) or levels (for level-shifted pulse width modulation) and thus can be applied to both multiphase and multilevel converter types. The simulations and the experimental results are presented in detail to show the validity and the effectiveness of the proposed methods. Further, thorough simulations on multiphase converters with different number of cells also show that the proposed method is much faster than the conventional method in both configuration and reconfiguration processes, especially in case the system has a large number of cells.


2014 ◽  
Vol 573 ◽  
pp. 143-149
Author(s):  
N. Ismayil Kani ◽  
B.V. Manikandan ◽  
Prabakar Perciyal

—This The Pulse Width Modulation (PWM) DC-to-AC inverter has been widely used in many applications due to its circuit simplicity and rugged control scheme. It is however driven by a hard-switching pulse width modulation (PWM) inverter, which has low switching frequency, high switching loss, high electro-magnetic interference (EMI), high acoustic noise and low efficiency, etc. To solve these problems of the hard-switching inverter, many soft-switching inverters have been designed in the past. Unfortunately, high device voltage stress, large dc link voltage ripples, complex control scheme and so on are noticed in the existing soft-switching inverters. This proposed work overcomes the above problems with simple circuit topology and all switches work in zero-voltage switching condition. Comparative analysis between conventional open loop, PI and fuzzy logic based soft switching inverter is also presented and discussed. Keywords—Zero voltage switching, Inverter, Dc link, PI controller, Fuzzy logic system control ,Modulation strategy, Soft switching


Sign in / Sign up

Export Citation Format

Share Document