scholarly journals Reduction of Electromagnetic Interference for Permanent Magnet Synchronous Motor Using Random PWM Switching Method Based on Four-Switch Three-Phase Inverters

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1998
Author(s):  
Shunbin Wu ◽  
Xinhua Guo ◽  
Rongkun Wang ◽  
Yulong Liu ◽  
Liaoyuan Lin ◽  
...  

The four-switch three-phase inverters have become an effective approach for fault-tolerant reconstruction and operation of the six-switch three-phase topology. However, the conventional control strategy for four-switch three-phase inverters can result in a large number of current harmonic components, high electromagnetic acoustic noise, and electromagnetic interference (EMI). Therefore, this paper proposes a random switching frequency pulse width modulation method under the centrosymmetry period with a two-state Markov chain based on four-switch three-phase inverters (RSFPWM-CPTMC). In this method, random numbers are optimized and evenly distributed on both sides of the center frequency within a specific frequency bandwidth range, which significantly reduces the current harmonics and EMI at the switching frequency and frequency multiplication. The spectral characteristics generated by the random switching frequency under the centrosymmetry period with the two-state Markov chain are evaluated and compared to that provided by the traditional fixed switching frequency pulse width modulation (FSFPWM). Simulations and experiments are carried out to illustrate the superiority of the proposal.

2013 ◽  
Vol 385-386 ◽  
pp. 1216-1219
Author(s):  
Yun Liang Wang ◽  
Yong Le Zhao

This paper presents fixed switching frequency direct power control (FSF-DPC) for three-phase AC/DC converter. Sensorless control strategies based on virtual-flux can optimize the performance of the system. In this paper, realization of pulse width modulation method for FSF-DPC is presented. The simulation results show that the system running performance is good.


Author(s):  
Sony Prakarsa Putra ◽  
Zulwisli Zulwisli

This study aims to create a PWM inverter that can drive the Brushless Unidirectional Flow Machine (MASTS). PWM inverters are intended to correct deficiencies in six-step inverters. Inverter is a circuit that is used to convert a DC voltage source into an AC voltage with a certain frequency. The use of inverters is found in electric vehicles. The system often used to control an inverter is a Pulse Width Modulation (PWM) based control, where pulse width is used to regulate speed. The inverter is tested using 3 pairs of mosfets as a switch to control the three-phase output of the inverter. In the inverter, PWM is used to adjust the width of the frequency pulse that will be given to the mosfet. This research used 3 variations of duty cycle 30%, 60%, 90% to determine the effect of MASTS speed on PWM by using a PWM inverter. The results of this study the speed of MASTS can be influenced by changes in duty cycle, with increasing value of the duty cycle, the faster the speed of MASTS, and vice versa. Keywords:Mosfet, Sensor Hall, MASTS, PWM, Inverter.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3884
Author(s):  
Jian Zheng ◽  
Mingcheng Lyu ◽  
Shengqing Li ◽  
Qiwu Luo ◽  
Keyuan Huang

Aiming at the problem of large magnitude and high frequency of common-mode voltage (CMV) when space vector pulse width modulation (SVPWM) is used in a three-phase motor fed by a two-level voltage source inverter, a common-mode reduction SVPWM (CMRSVPWM) is studied. In this method, six new sectors are obtained by rotating six sectors of conventional SVPWM by 30°. In odd-numbered sectors, only three non-zero vectors with odd subscripts are used for synthesis, while in even-numbered sectors, only three non-zero vectors with even subscripts are used for synthesis. The actuation durations of three non-zero vectors in each switching period in each sector are given. Simulation and experimental results show that, compared with the conventional SVPWM, the CMV magnitude of CMRSVPWM is reduced by 66.67% and the CMV frequency of CMRSVPWM is reduced from the original switching frequency to the triple fundamental frequency. At the same time, the current, torque and speed of the motor are still good.


Sign in / Sign up

Export Citation Format

Share Document