10-Gbit/s data transmission with forward error correction using a 120-GHz-band wireless link

Author(s):  
A. Hirata ◽  
N. Iai ◽  
R. Yamaguchi ◽  
H. Takahashi ◽  
T. Kosugi ◽  
...  
2013 ◽  
Vol 31 (4) ◽  
pp. 689-695 ◽  
Author(s):  
Roberto Rodes ◽  
Michael Mueller ◽  
Bomin Li ◽  
Jose Estaran ◽  
Jesper Bevensee Jensen ◽  
...  

Error correction and detection during data transmission is a major issue. For resolving this, many error correction techniques are available. The Reed-Solomon coding is the most powerful forward error correction technique used in Gigabit Automotive Ethernet to compact channel noise during data transmission. The car becomes more smarter day by day and more new advanced electronics is being used in-vehicle. Gigabit Automotive Ethernet(1000BASE-T1) provide fast bandwidth for many kinds of applications and connect different functional parts in the car. The Reed Solomon(RS) coding is the powerful forward error correction(FEC) technique used in 1000BASE-T1 Automotive Ethernet. RS(450,406) coding is also known as shortened Reed Solomon codes. The Reed Solomon(RS) codes are generally used in communication system due to its ability of correcting both random and burst errors. Reed Solomon codes are no-binary systematic linear block codes. RS coding is widely used in high speed communication system. This RS code is implemented using Galois field(GF). The Automotive Ethernet is encoded using RS(450,406) codes through GF(512) for FEC. This RS codes can corrects the error up to t=22 symbol, while other encoding techniques corrects the error in t bits. In this paper we implemented the RS(Reed Solomon) code in Cadence ncsim Verilog software and used Cadence Simvision for showing timing diagrams. This RS code uses 9-bit based shortened (450,406) code.


Author(s):  
Salah A. Alabady

<p>The main requirements in the design of wireless sensor network applications are to minimize energy consumption and maximize battery lifetime. Power is primarily consumed during wireless transmission and reception. Automatic repeat request (ARQ) and forward error correction (FEC) are the two basic methods to recover erroneous packets. As energy conservation is a major issue of concern in wireless sensor networks, repeat transmission because the error in the data received is not an option, and FEC would be preferred over ARQ. FEC is applied in situations where retransmissions are relatively costly or impossible. A successful data transmission means a higher energy saving and a long-life network. This paper presents a novel linear block forward error correction code for wireless sensor network applications called Low Complexity Parity Check (LCPC). The LCPC code offers lower encoding and decoding complexity than other types of codes. To validate the performance of the LCPC code, the proposed coding scheme was investigated at different values of data transmission with different types of modulations over Additive white Gaussian noise (AWGN) and Rayleigh fading channels. The simulation results show that the proposed code outperforms the renowned LDPC (8, 4), (255,175), and (576, 288) codes.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chi-Huang Shih ◽  
Yeong-Yuh Xu ◽  
Yao-Tien Wang

With the wide deployment of Internet Protocol (IP) infrastructure and rapid development of digital technologies, Internet Protocol Television (IPTV) has emerged as one of the major multimedia access techniques. A general IPTV transmission system employs both encryption and forward error correction (FEC) to provide the authorized subscriber with a high-quality perceptual experience. This two-layer processing, however, complicates the system design in terms of computational cost and management cost. In this paper, we propose a novel FEC scheme to ensure the secure and reliable transmission for IPTV multimedia content and services. The proposed secure FEC utilizes the characteristics of FEC including the FEC-encoded redundancies and the limitation of error correction capacity to protect the multimedia packets against the malicious attacks and data transmission errors/losses. Experimental results demonstrate that the proposed scheme obtains similar performance compared with the joint encryption and FEC scheme.


Sign in / Sign up

Export Citation Format

Share Document