Numerical Investigations of Energy Separation into a Vortex Tube

Author(s):  
Shaowei Zhou ◽  
Qingzheng Meng ◽  
Dongmin Liu
Author(s):  
Khirod Mahapatro ◽  
P Vamsi Krishna

Dual nozzle vortex tube cooling system (VTCS) is developed to improve the machinability of Ti-6Al-4V where cold-compressed CO2 gas is used as a coolant. The cooling effect is produced by the process of energy separation in the vortex tube and the coolant is supplied into the machining zone to remove the generated heat in machining. In this study, the responses such as cutting force (Fz), cutting temperature (Tm), and surface roughness (Ra) are analyzed by considering coolant inlet pressure, cold fraction, and nozzle diameter as input variables. Further optimization is performed for the input variables using the genetic algorithm technique, and the results at optimum conditions are compared with those of dry cutting. From the results, lower cutting force is observed at lower coolant pressure and cold fraction and higher nozzle diameter. The cutting temperature is minimized by increasing coolant pressure and cold fraction and by decreasing nozzle diameter. A better surface finish is observed at high coolant pressure and cold fraction and lower nozzle diameters. It is observed from the response surface method (RSM) that the coolant pressure is most significantly affecting all the responses. At optimum conditions, the cutting temperature and surface roughness are 35.6% and 66.14%, respectively, lower than dry cutting due to the effective cooling and lubricating action of the CO2 gas, whereas cutting force observed under the VTCS is 18.6% higher than that of dry cutting because of the impulse force of the coolant VTCS and thermal softening of the workpiece in dry cutting.


2013 ◽  
Vol 17 (4) ◽  
pp. 1079-1092 ◽  
Author(s):  
Mahyar Kargaran ◽  
A. Arabkoohsar ◽  
S.J. Hagighat-Hosini ◽  
V. Farzaneh-Kord ◽  
Mahmood Farzaneh-Gord

Vortex tube is a simple device without a moving part which is capable of separating hot and cold gas streams from a higher pressure inlet gas stream. The mechanism of energy separation has been investigated by several scientists and second law approach has emerged as an important tool for optimizing the vortex tube performance. Here, a thermodynamic model has been used to investigate vortex tube energy separation. Further, a method has been proposed for optimizing the vortex tube based on the rate of entropy generation obtained from experiments. Also, an experimental study has been carried out to investigate the effects of the hot tube length and cold orifice diameter on entropy generation within a vortex tube with natural gas as working fluid. A comparison has been made between air and natural gas as working fluids. The results show that the longest tube generates lowest entropy for NG. For air, it is middle tube which generates lowest entropy. Integration of entropy generation for all available cold mass fractions unveiled that an optimized value for hot tube length and cold orifice diameter is exist.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Volkan Kırmacı ◽  
Onuralp Uluer

This paper discusses the experimental investigation of vortex tube performance as it relates to cold mass fraction, inlet pressure, and nozzle number. The orifices have been made of the polyamide plastic material. Five different orifices, each with two, three, four, five and six nozzles, respectively, were manufactured and used during the test. The experiments have been conducted with each one of those orifices shown above, and the performance of the vortex tube has been tested with air inlet pressures varying from 150 kPa to 700 kPa with 50 kPa increments and the cold mass fractions of 0.5–0.7 with 0.02 increments. The energy separation has been investigated by use of the experimentally obtained data. The results of the experimental study have shown that the inlet pressure was the most effective parameter on heating and the cooling performance of the vortex tube. This occurs due to the higher angular velocities and angular momentum conservation inside the vortex tube. The higher the inlet pressure produces, the higher the angular velocity difference between the center flow and the peripheral flow in the tube. Furthermore, the higher velocity also means a higher frictional heat formation between the wall and the flow at the wall surface of the tube. This results in lower cold outlet temperatures and higher hot outlet temperatures.


2013 ◽  
Vol 397-400 ◽  
pp. 205-208
Author(s):  
Wen Chuan Wang ◽  
Xiang Jun Fang ◽  
Shi Long Liu ◽  
Wen Long Sun

This paper aims to investigate fixed composition natural gases including N2, CH4 and C2H4 energy separation effect in vortex tube. Energy separation phenomena of those gases were investigated by means of three-dimensional Computational Fluid Dynamics (CFD) method. Flow fields of natural gases in fixed inlet boundary conditions were simulated. The results main factors were found that affect the energy separation with cold mass fraction being 0.7 and pressure drop ratio being 3.90. At the same time, this paper has illustrated the effects and tendencies of energy separation with gases in the tube under the same cold mass flow fraction and cold pressure ratio. The results show mixture gases total temperature difference effect is unchanged varied with the cold mass fraction; CH4% has no effect on the vortex cold end temperature separation, but varied of CH4% has an influence in total temperature and hot end separation effect; total temperature separation effect of CH4% was divided into two sections, one is0%-80%, and the other 80%-100%.


Sign in / Sign up

Export Citation Format

Share Document