High Frequency Methods Based in Parabolic Equation and Ray Launching in Electromagnetic Waves Propagation Predictions

Author(s):  
Hernan G. Triana ◽  
Andres Navarro
2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Wenwan Ding ◽  
Kun Wang ◽  
Yunliang Long

An improved fractal sea surface model, which can describe the capillary waves very well, is introduced to simulate the one-dimension rough sea surface. In this model, the propagation of electromagnetic waves (EWs) is computed by the parabolic equation (PE) method using the finite-difference (FD) algorithm. The numerical simulation results of the introduced model are compared with those of the Miller-Brown model and the Elfouhaily spectrum inversion model. It has been shown that the effects of the fine structure of the sea surface on the EWs propagation in the introduced model are more apparent than those in the other two models.


2021 ◽  
Vol 10 (1) ◽  
pp. 6-14
Author(s):  
N. N. Grinchik ◽  
O. V. Boiprav

The paper presents the results of constructing the physical and mathematical model of high-frequency electromagnetic waves propagation in slowly moving media of finite dimensions, which takes into account the phenomena of specular reflection of these waves. The constructed model is based on formulas designed to determine the speed of electromagnetic waves propagation in slowly moving media of finite dimensions, as well as on equations designed to describe these waves. The advantageous feature of these equations is that they take into account the Fresnel drag coefficient for electromagnetic waves propagation speed. The approach to solving of these equations, as well as the approach to modeling of the process of electromagnetic waves propagation in slowly moving media of finite dimensions, based on the use of a difference scheme, in which the motion of these media is taken into account, is proposed. It has been determined that the proposed model and approaches can be used in solving problems related to the construction of receiving-transmitting paths, as well as in solving problems of aeroacoustics.


1991 ◽  
Vol 46 (1) ◽  
pp. 99-106 ◽  
Author(s):  
S. K. Sharma ◽  
A. Sudarshan

In this paper, we use the hydrodynamic approach to study the stimulated scattering of high-frequency electromagnetic waves by a low-frequency electrostatic perturbation that is either an upper- or lower-hybrid wave in a two-electron-temperature plasma. Considering the four-wave interaction between a strong high-frequency pump and the low-frequency electrostatic perturbation (LHW or UHW), we obtain the dispersion relation for the scattered wave, which is then solved to obtain an explicit expression for the growth rate of the coupled modes. For a typical Q-machine plasma, results show that in both cases the growth rate increases with noh/noc. This is in contrast with the results of Guha & Asthana (1989), who predicted that, for scattering by a UHW perturbation, the growth rate should decrease with increasing noh/noc.


2012 ◽  
Vol 111 (7) ◽  
pp. 073303 ◽  
Author(s):  
Wu Xiao-po ◽  
Shi Jia-ming ◽  
Wang Jia-chun ◽  
Yuan Zhong-cai ◽  
Xu Bo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document