High-frequency diffraction of electromagnetic waves by a circular aperture in an infinite plane conducting screen

1960 ◽  
Vol 8 (1) ◽  
pp. 27-36 ◽  
Author(s):  
S. Seshadri ◽  
T. Wu
1991 ◽  
Vol 46 (1) ◽  
pp. 99-106 ◽  
Author(s):  
S. K. Sharma ◽  
A. Sudarshan

In this paper, we use the hydrodynamic approach to study the stimulated scattering of high-frequency electromagnetic waves by a low-frequency electrostatic perturbation that is either an upper- or lower-hybrid wave in a two-electron-temperature plasma. Considering the four-wave interaction between a strong high-frequency pump and the low-frequency electrostatic perturbation (LHW or UHW), we obtain the dispersion relation for the scattered wave, which is then solved to obtain an explicit expression for the growth rate of the coupled modes. For a typical Q-machine plasma, results show that in both cases the growth rate increases with noh/noc. This is in contrast with the results of Guha & Asthana (1989), who predicted that, for scattering by a UHW perturbation, the growth rate should decrease with increasing noh/noc.


2012 ◽  
Vol 111 (7) ◽  
pp. 073303 ◽  
Author(s):  
Wu Xiao-po ◽  
Shi Jia-ming ◽  
Wang Jia-chun ◽  
Yuan Zhong-cai ◽  
Xu Bo ◽  
...  

2018 ◽  
Vol 3 (11) ◽  
pp. 73-77
Author(s):  
Aye Mint Mohamed Mostapha ◽  
Gamil Alsharahi ◽  
Abdellah Driouach

Ground penetrating radar (GPR) is a very effective tool for detecting and identifying objects below the ground surface.  based on  the propagation and reflection of high-frequency electromagnetic waves. The GPR reflection can be affected by many things like the type of objects orientation, their shapes ..ect. The purpose of this paper is to  study by simulation the effect of objects orientation in two different mediums (dry and wet sand) on the GPR signal reflection using Reflexw software which is based on a numerical method known as finite difference in time domain (FDTD).  The simulations that have been realized included a conductor  and dielectric objects. The results obtained have led us to find that the propagation path, the reflection strength and the signal form change with the change of object orientation and nature. To confirm the validity of the results, we compared them with experimental results previously published by researchers under the same conditions.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Michael Wieckowski ◽  
Martin Margala

The potential of converting heat energy into electrical energy using a previously reported waveguide-ballistic device is presented. The interactions between incident electromagnetic waves and free electrons in a metal waveguide are analyzed with respect to their transport through a high-frequency ballistic rectifier using finite element method simulation. It was determined that the resulting conversion efficiency to a dc potential is approximately 6%, yielding a power density on the order of 30W∕m2.


Sign in / Sign up

Export Citation Format

Share Document