Methodology for high level estimation of FPGA power consumption

Author(s):  
V. Degalahal ◽  
T. Tuan
2004 ◽  
Vol 1 (1) ◽  
pp. 23-31
Author(s):  
A. García-Ortiz ◽  
T. Murgan ◽  
L. Indrusiak ◽  
L. Kabulepa ◽  
M. Glesner

As technology shrinks, the importance of the communication architecture in the overall system performance and power consumption increases dramatically. In this work, a framework is developed to estimate the consumption in point-to-point interconnect structures at high levels of abstraction. To model the effect of cross coupled capacitances, the spatial correlationbetween adjacent wire lines is considered together with the transition activity, and both are efficiently estimated using word-level statistics. Based on a set of increasing complexity stochastic data models, an analytical estimation procedure is proposed and validated with both synthetic and real data sets. Extensive bit level simulations have been carried out to show the accuracy of the proposed models.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Karim M. A. Ali ◽  
Rabie Ben Atitallah ◽  
Abdessamad Ait El Cadi ◽  
Nizar Fakhfakh ◽  
Jean-Luc Dekeyser

Embedded video applications are now involved in sophisticated transportation systems like autonomous vehicles and driver assistance systems. As silicon capacity increases, the design productivity gap grows up for the current available design tools. Hence, high-level synthesis (HLS) tools emerged in order to reduce that gap by shifting the design efforts to higher abstraction levels. In this paper, we present ViPar as a tool for exploring different video processing architectures at higher design level. First, we proposed a parametrizable parallel architectural model dedicated for video applications. Second, targeting this architectural model, we developed ViPar tool with two main features: (1) An empirical model was introduced to estimate the power consumption based on hardware utilization and operating frequency. In addition to that, we derived the equations for estimating the hardware utilization and execution time for each design point during the space exploration process. (2) By defining the main characteristics of the parallel video architecture like parallelism level, the number of input/output ports, the pixel distribution pattern, and so on, ViPar tool can automatically generate the dedicated architecture for hardware implementation. In the experimental validation, we used ViPar tool to generate automatically an efficient hardware implementation for a Multiwindow Sum of Absolute Difference stereo matching algorithm on Xilinx Zynq ZC706 board. We succeeded to increase the design productivity by converging rapidly to the appropriate designs that fit with our system constraints in terms of power consumption, hardware utilization, and frame execution time.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Fenghui Yao ◽  
Mohamed Saleh Zein-Sabatto ◽  
Guifeng Shao ◽  
Mohammad Bodruzzaman ◽  
Mohan Malkani

Quantum-dot cellular automata (QCA) is an attractive nanotechnology with the potential alterative to CMOS technology. QCA provides an interesting paradigm for faster speed, smaller size, and lower power consumption in comparison to transistor-based technology, in both communication and computation. This paper describes the design of a 4-bit multifunction nanosensor data processor (NSDP). The functions of NSDP contain (i) sending the preprocessed raw data to high-level processor, (ii) counting the number of the active majority gates, and (iii) generating the approximate sigmoid function. The whole system is designed and simulated with several different input data.


Sign in / Sign up

Export Citation Format

Share Document