A Frameless Imaging Sensor with Asynchronous Pixels: An Architectural Evaluation

Author(s):  
Montek Singh ◽  
Pintian Zhang ◽  
Andrew Vitkus ◽  
Ketan Mayer-Patel ◽  
Leandra Vicci
Nature ◽  
2021 ◽  
Vol 590 (7845) ◽  
pp. 256-261
Author(s):  
Christopher Rogers ◽  
Alexander Y. Piggott ◽  
David J. Thomson ◽  
Robert F. Wiser ◽  
Ion E. Opris ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4104
Author(s):  
Nassr Al-Baradoni ◽  
Peter Groche

In this paper we present a novel, cost-effective camera-based multi-axis force/torque sensor concept for integration into metallic load-bearing structures. A two-part pattern consisting of a directly incident and mirrored light beam is projected onto the imaging sensor surface. This allows the capturing of 3D displacements, occurring due to structure deformation under load in a single image. The displacement of defined features in size and position can be accurately analyzed and determined through digital image correlation (DIC). Validation on a prototype shows good accuracy of the measurement and a unique identification of all in- and out-of-plane displacement components under multiaxial load. Measurements show a maximum deviation related to the maximum measured values between 2.5% and 4.8% for uniaxial loads ( and between 2.5% and 10.43% for combined bending, torsion and axial load. In the course of the investigations, the measurement inaccuracy was partly attributed to the joint used between the sensor parts and the structure as well as to eccentric load.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2736
Author(s):  
Zehao Li ◽  
Shunsuke Yoshimoto ◽  
Akio Yamamoto

This paper proposes a proximity imaging sensor based on a tomographic approach with a low-cost conductive sheet. Particularly, by defining capacitance density, physical proximity information is transformed into electric potential. A novel theoretical model is developed to solve the capacitance density problem using the tomographic approach. Additionally, a prototype is built and tested based on the model, and the system solves an inverse problem for imaging the capacitance density change that indicates the object’s proximity change. In the evaluation test, the prototype reaches an error rate of 10.0–15.8% in horizontal localization at different heights. Finally, a hand-tracking demonstration is carried out, where a position difference of 33.8–46.7 mm between the proposed sensor and depth camera is achieved at 30 fps.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 340
Author(s):  
Elisa Chiodi ◽  
Francesco Damin ◽  
Laura Sola ◽  
Lucia Ferraro ◽  
Dario Brambilla ◽  
...  

The manufacture of a very high-quality microarray support is essential for the adoption of this assay format in clinical routine. In fact, poorly surface-bound probes can affect the diagnostic sensitivity or, in worst cases, lead to false negative results. Here we report on a reliable and easy quality control method for the evaluation of spotted probe properties in a microarray test, based on the Interferometric Reflectance Imaging Sensor (IRIS) system, a high-resolution label free technique able to evaluate the variation of the mass bound to a surface. In particular, we demonstrated that the IRIS analysis of microarray chips immediately after probe immobilization can detect the absence of probes, which recognizably causes a lack of signal when performing a test, with clinical relevance, using fluorescence detection. Moreover, the use of the IRIS technique allowed also to determine the optimal concentration of the probe, that has to be immobilized on the surface, to maximize the target recognition, thus the signal, but to avoid crowding effects. Finally, through this preliminary quality inspection it is possible to highlight differences in the immobilization chemistries. In particular, we have compared NHS ester versus click chemistry reactions using two different surface coatings, demonstrating that, in the diagnostic case used as an example (colorectal cancer) a higher probe density does not reflect a higher binding signal, probably because of a crowding effect.


ACS Omega ◽  
2020 ◽  
Vol 5 (39) ◽  
pp. 25358-25364
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
Fulya Ekiz Kanik ◽  
John Rejman ◽  
...  

2007 ◽  
Author(s):  
Jochen Barth ◽  
Alfred Fendt ◽  
Rolf Florian ◽  
Wolfgang Kieslich

Sign in / Sign up

Export Citation Format

Share Document