Research on fault diagnosis of marine diesel engine based on probabilistic neural network optimized by quantum genetic algorithm

Author(s):  
Jingtao Zhang ◽  
Defu Zhang ◽  
Guohua Shen ◽  
Jiankun Yang
2012 ◽  
Vol 548 ◽  
pp. 444-449 ◽  
Author(s):  
Xin Gang Song ◽  
Yu Na Miao ◽  
Qiang Ma ◽  
Xiao Jie Guo

In order to detect and diagnose abnormal conditions of marine diesel engine and ensure its normal functioning, the present study adopts the BP neural network and related algorithms to determine the remote fault diagnosis process. Taking the design of exhaust gas temperature remote monitoring sub-system as an example, MATLAB programming was used for data simulation and verification. The applying of the system on board a real ship shows that it has a high working rate, a reliable and safe storage mode and a self- adaptive process.


2010 ◽  
Vol 29-32 ◽  
pp. 1543-1549 ◽  
Author(s):  
Jie Wei ◽  
Hong Yu ◽  
Jin Li

Three-ratio of the IEC is a convenient and effective approach for transformer fault diagnosis in the dissolved gas analysis (DGA). Fuzzy theory is used to preprocess the three-ratio for its boundary that is too absolute. As the same time, an improved quantum genetic algorithm IQGA (QGASAC) is used to optimize the weight and threshold of the back propagation (BP). The local and global searching ability of the QGASAC approach is utilized to find the BP optimization solution. It can overcome the slower convergence velocity and hardly getting the optimization of the BP neural network. So, aiming at the shortcoming of BP neural network and three-ratio, blurring the boundary of the gas ratio and the QGASAC algorithm is introduced to optimize the BP network. Then the QGASAC-IECBP method is proposed in this paper. Experimental results indicate that the proposed algorithm in this paper that both convergence velocity and veracity are all improved to some extent. And in this paper, the proposed algorithm is robust and practical.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042005
Author(s):  
Xueyi Liu ◽  
Junhao Dong ◽  
Guangyu Tu

Abstract Fan, as the most commonly used mechanical equipment, is widely used. In order to solve the problem of fan bearing fault diagnosis, this paper analyzes the main factors affecting fan spindle speed and power generation in operation. The input and output parameters of the performance prediction model are determined. The performance prediction model of wind turbine is established by using generalized regression neural network, and the smoothing factor of GRNN is optimized by comparing the prediction accuracy of the model. Based on this model, the sliding data window method is used to calculate the residual evaluation index of wind turbine speed and power in real time. When the evaluation index continuously exceeds the pre-set threshold, the abnormal state of wind turbine can be judged. In order to obtain wind turbine blades with better aerodynamic performance, a blade aerodynamic performance optimization method based on quantum heredity is proposed. The B é zier curve control point is used as the design variable to represent the continuous chord length and torsion angle distribution of the blade, the blade shape optimization model aiming at the maximum power is established, and the quantum genetic algorithm is used to optimize the chord length and torsion angle of the blade under different constraints. The optimization results of quantum genetic algorithm and classical genetic algorithm are compared and analyzed. Under the same parameters and boundary conditions, the proposed blade aerodynamic optimization method based on quantum genetic optimization is better than the classical genetic optimization method, and can obtain better blade aerodynamic shape and higher wind energy capture efficiency. This method makes up for the shortcomings of traditional fault diagnosis methods, improves the recognition rate of fault types and the accuracy of fault diagnosis, and the diagnosis effect is good.


Sign in / Sign up

Export Citation Format

Share Document