Gassing characteristics of high capacity, high energy density rechargeable silver zinc cells

Author(s):  
Z. Adamedes
2010 ◽  
Vol 25 (8) ◽  
pp. 1636-1644 ◽  
Author(s):  
Brian J. Landi ◽  
Cory D. Cress ◽  
Ryne P. Raffaelle

Recent advancements using carbon nanotube electrodes show the ability for multifunctionality as a lithium-ion storage material and as an electrically conductive support for other high capacity materials like silicon or germanium. Experimental data show that replacement of conventional anode designs, which use graphite composites coated on copper foil, with a freestanding silicon-single-walled carbon nanotube (SWCNT) anode, can increase the usable anode capacity by up to 20 times. In this work, a series of calculations were performed to elucidate the relative improvement in battery energy density for such anodes paired with conventional LiCoO2, LiFePO4, and LiNiCoAlO2 cathodes. Results for theoretical flat plate prismatic batteries comprising freestanding silicon-SWCNT anodes with conventional cathodes show energy densities of 275 Wh/kg and 600 Wh/L to be theoretically achievable; this is a 50% improvement over today's commercial cells.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


RSC Advances ◽  
2020 ◽  
Vol 10 (30) ◽  
pp. 17702-17712 ◽  
Author(s):  
Haijun Peng ◽  
Huiqing Fan ◽  
Chenhui Yang ◽  
Yapeng Tian ◽  
Chao Wang ◽  
...  

Sodium-ion intercalated δ-MnO2 nanoflakes are applied in an aqueous rechargeable zinc battery cathode with high energy density and excellent durable stability.


2019 ◽  
Vol 3 (7) ◽  
pp. 1265-1279 ◽  
Author(s):  
Xiaojun Wang ◽  
Lili Liu ◽  
Zhiqiang Niu

Lithium-ion capacitors (LICs) can deliver high energy density, large power density and excellent stability since they possess a high-capacity battery-type electrode and a high rate capacitor-type electrode.


Nanoscale ◽  
2017 ◽  
Vol 9 (31) ◽  
pp. 11004-11011 ◽  
Author(s):  
Xiongwei Wu ◽  
Xinhai Yuan ◽  
Jingang Yu ◽  
Jun Liu ◽  
Faxing Wang ◽  
...  

An ARLB based on high capacity MWCNTs@S@PPy anode and LiMn2O4 cathode can deliver a high energy density of 110 Wh kg−1.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 680
Author(s):  
Jianyang Jiang ◽  
Xiong Xiong Liu ◽  
Jiayu Han ◽  
Ke Hu ◽  
Jun Song Chen

Transition metal hydroxides have attracted a lot of attention as the electrode materials for supercapacitors owing to their relatively high theoretical capacity, low cost, and facile preparation methods. However, their low intrinsic conductivity deteriorates their high-rate performance and cycling stability. Here, self-supported sheets-on-wire CuO@Ni(OH)2/Zn(OH)2 (CuO@NiZn) composite nanowire arrays were successfully grown on copper foam. The CuO nanowire backbone provided enhanced structural stability and a highly efficient electron-conducting pathway from the active hydroxide nanosheets to the current collector. The resulting CuO@NiZn as the battery-type electrode for supercapacitor application delivered a high capacity of 306.2 mAh g−1 at a current density of 0.8 A g−1 and a very stable capacity of 195.1 mAh g−1 at 4 A g−1 for 10,000 charge–discharge cycles. Furthermore, a quasi-solid-state hybrid supercapacitor (qss HSC) was assembled with active carbon, exhibiting 125.3 mAh g−1 at 0.8 A g−1 and a capacity of 41.6 mAh g−1 at 4 A g−1 for 5000 charge–discharge cycles. Furthermore, the qss HSC was able to deliver a high energy density of about 116.0 Wh kg−1. Even at the highest power density of 7.8 kW kg−1, an energy density of 20.5 Wh kg−1 could still be obtained. Finally, 14 red light-emitting diodes were lit up by a single qss HSC at different bending states, showing good potential for flexible energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document