AmpliconNet: Sequence Based Multi-layer Perceptron for Amplicon Read Classification Using Real-time Data Augmentation

Author(s):  
Ali Kishk ◽  
Mohamed El-Hadidi
Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Ghada Abdelmoumin ◽  
Jessica Whitaker ◽  
Danda B. Rawat ◽  
Abdul Rahman

An effective anomaly-based intelligent IDS (AN-Intel-IDS) must detect both known and unknown attacks. Hence, there is a need to train AN-Intel-IDS using dynamically generated, real-time data in an adversarial setting. Unfortunately, the public datasets available to train AN-Intel-IDS are ineluctably static, unrealistic, and prone to obsolescence. Further, the need to protect private data and conceal sensitive data features has limited data sharing, thus encouraging the use of synthetic data for training predictive and intrusion detection models. However, synthetic data can be unrealistic and potentially bias. On the other hand, real-time data are realistic and current; however, it is inherently imbalanced due to the uneven distribution of anomalous and non-anomalous examples. In general, non-anomalous or normal examples are more frequent than anomalous or attack examples, thus leading to skewed distribution. While imbalanced data are commonly predominant in intrusion detection applications, it can lead to inaccurate predictions and degraded performance. Furthermore, the lack of real-time data produces potentially biased models that are less effective in predicting unknown attacks. Therefore, training AN-Intel-IDS using imbalanced and adversarial learning is instrumental to their efficacy and high performance. This paper investigates imbalanced learning and adversarial learning for training AN-Intel-IDS using a qualitative study. It surveys and synthesizes generative-based data augmentation techniques for addressing the uneven data distribution and generative-based adversarial techniques for generating synthetic yet realistic data in an adversarial setting using rapid review, structured reporting, and subgroup analysis.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

2021 ◽  
Vol 31 (6) ◽  
pp. 7-7
Author(s):  
Valerie A. Canady
Keyword(s):  

Author(s):  
Yu-Hsiang Wu ◽  
Jingjing Xu ◽  
Elizabeth Stangl ◽  
Shareka Pentony ◽  
Dhruv Vyas ◽  
...  

Abstract Background Ecological momentary assessment (EMA) often requires respondents to complete surveys in the moment to report real-time experiences. Because EMA may seem disruptive or intrusive, respondents may not complete surveys as directed in certain circumstances. Purpose This article aims to determine the effect of environmental characteristics on the likelihood of instances where respondents do not complete EMA surveys (referred to as survey incompletion), and to estimate the impact of survey incompletion on EMA self-report data. Research Design An observational study. Study Sample Ten adults hearing aid (HA) users. Data Collection and Analysis Experienced, bilateral HA users were recruited and fit with study HAs. The study HAs were equipped with real-time data loggers, an algorithm that logged the data generated by HAs (e.g., overall sound level, environment classification, and feature status including microphone mode and amount of gain reduction). The study HAs were also connected via Bluetooth to a smartphone app, which collected the real-time data logging data as well as presented the participants with EMA surveys about their listening environments and experiences. The participants were sent out to wear the HAs and complete surveys for 1 week. Real-time data logging was triggered when participants completed surveys and when participants ignored or snoozed surveys. Data logging data were used to estimate the effect of environmental characteristics on the likelihood of survey incompletion, and to predict participants' responses to survey questions in the instances of survey incompletion. Results Across the 10 participants, 715 surveys were completed and survey incompletion occurred 228 times. Mixed effects logistic regression models indicated that survey incompletion was more likely to happen in the environments that were less quiet and contained more speech, noise, and machine sounds, and in the environments wherein directional microphones and noise reduction algorithms were enabled. The results of survey response prediction further indicated that the participants could have reported more challenging environments and more listening difficulty in the instances of survey incompletion. However, the difference in the distribution of survey responses between the observed responses and the combined observed and predicted responses was small. Conclusion The present study indicates that EMA survey incompletion occurs systematically. Although survey incompletion could bias EMA self-report data, the impact is likely to be small.


Sign in / Sign up

Export Citation Format

Share Document