Recent Dimensionality Reduction Techniques for Visualizing High-Dimensional Parkinson’s Disease Omics Data

Author(s):  
Marios G. Krokidis ◽  
Georgios Dimitrakopoulos ◽  
Aristidis G. Vrahatis ◽  
Themis P. Exarchos ◽  
Panagiotis Vlamos
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Van Hoan Do ◽  
Stefan Canzar

AbstractEmerging single-cell technologies profile multiple types of molecules within individual cells. A fundamental step in the analysis of the produced high-dimensional data is their visualization using dimensionality reduction techniques such as t-SNE and UMAP. We introduce j-SNE and j-UMAP as their natural generalizations to the joint visualization of multimodal omics data. Our approach automatically learns the relative contribution of each modality to a concise representation of cellular identity that promotes discriminative features but suppresses noise. On eight datasets, j-SNE and j-UMAP produce unified embeddings that better agree with known cell types and that harmonize RNA and protein velocity landscapes.


2017 ◽  
Vol 10 (13) ◽  
pp. 355 ◽  
Author(s):  
Reshma Remesh ◽  
Pattabiraman. V

Dimensionality reduction techniques are used to reduce the complexity for analysis of high dimensional data sets. The raw input data set may have large dimensions and it might consume time and lead to wrong predictions if unnecessary data attributes are been considered for analysis. So using dimensionality reduction techniques one can reduce the dimensions of input data towards accurate prediction with less cost. In this paper the different machine learning approaches used for dimensionality reductions such as PCA, SVD, LDA, Kernel Principal Component Analysis and Artificial Neural Network  have been studied.


2019 ◽  
Vol 8 (S3) ◽  
pp. 66-71
Author(s):  
T. Sudha ◽  
P. Nagendra Kumar

Data mining is one of the major areas of research. Clustering is one of the main functionalities of datamining. High dimensionality is one of the main issues of clustering and Dimensionality reduction can be used as a solution to this problem. The present work makes a comparative study of dimensionality reduction techniques such as t-distributed stochastic neighbour embedding and probabilistic principal component analysis in the context of clustering. High dimensional data have been reduced to low dimensional data using dimensionality reduction techniques such as t-distributed stochastic neighbour embedding and probabilistic principal component analysis. Cluster analysis has been performed on the high dimensional data as well as the low dimensional data sets obtained through t-distributed stochastic neighbour embedding and Probabilistic principal component analysis with varying number of clusters. Mean squared error; time and space have been considered as parameters for comparison. The results obtained show that time taken to convert the high dimensional data into low dimensional data using probabilistic principal component analysis is higher than the time taken to convert the high dimensional data into low dimensional data using t-distributed stochastic neighbour embedding.The space required by the data set reduced through Probabilistic principal component analysis is less than the storage space required by the data set reduced through t-distributed stochastic neighbour embedding.


2009 ◽  
Vol 6 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Aswani Kumar

Domains such as text, images etc contain large amounts of redundancies and ambiguities among the attributes which result in considerable noise effects (i.e. the data is high dimension). Retrieving the data from high dimensional datasets is a big challenge. Dimensionality reduction techniques have been a successful avenue for automatically extracting the latent concepts by removing the noise and reducing the complexity in processing the high dimensional data. In this paper we conduct a systematic study on comparing the unsupervised dimensionality reduction techniques for text retrieval task. We analyze these techniques from the view of complexity, approximation error and retrieval quality with experiments on four testing document collections.


Author(s):  
Xuan Huang ◽  
Lei Wu ◽  
Yinsong Ye

High-dimensional data is ubiquitous in scientific research and industrial production fields. It brings a lot of information to people, at the same time, because of its sparse and redundancy, it also brings great challenges to data mining and pattern recognition. Dimensionality reduction can reduce redundancy and noise, reduce the complexity of learning algorithms, and improve the accuracy of classification, it is an important and key step in pattern recognition system. In this paper, we overview the classical techniques for dimensionality reduction and review their properties, and categorize these techniques according to their implementation process. We deduce each algorithm in detail and intuitively show their underlying mathematical principles. Thereby, the focus is to uncover the optimization process for each technique. We compare the characteristics and limitations of each technique and summarize the scope of application, discussing a number of open problems and a perspective of research trend in future.


2015 ◽  
Vol 294 ◽  
pp. 553-564 ◽  
Author(s):  
Manuel Domínguez ◽  
Serafín Alonso ◽  
Antonio Morán ◽  
Miguel A. Prada ◽  
Juan J. Fuertes

Sign in / Sign up

Export Citation Format

Share Document