scholarly journals Asynchronous Federated Learning for Sensor Data with Concept Drift

Author(s):  
Yujing Chen ◽  
Zheng Chai ◽  
Yue Cheng ◽  
Huzefa Rangwala
Keyword(s):  
2018 ◽  
Vol 9 (2) ◽  
pp. 69-79 ◽  
Author(s):  
Klemen Kenda ◽  
Dunja Mladenić

Abstract Background: Internet of Things (IoT), earth observation and big scientific experiments are sources of extensive amounts of sensor big data today. We are faced with large amounts of data with low measurement costs. A standard approach in such cases is a stream mining approach, implying that we look at a particular measurement only once during the real-time processing. This requires the methods to be completely autonomous. In the past, very little attention was given to the most time-consuming part of the data mining process, i.e. data pre-processing. Objectives: In this paper we propose an algorithm for data cleaning, which can be applied to real-world streaming big data. Methods/Approach: We use the short-term prediction method based on the Kalman filter to detect admissible intervals for future measurements. The model can be adapted to the concept drift and is useful for detecting random additive outliers in a sensor data stream. Results: For datasets with low noise, our method has proven to perform better than the method currently commonly used in batch processing scenarios. Our results on higher noise datasets are comparable. Conclusions: We have demonstrated a successful application of the proposed method in real-world scenarios including the groundwater level, server load and smart-grid data


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6775
Author(s):  
Vishnu Manasa Devagiri ◽  
Veselka Boeva ◽  
Shahrooz Abghari ◽  
Farhad Basiri ◽  
Niklas Lavesson

In smart buildings, many different systems work in coordination to accomplish their tasks. In this process, the sensors associated with these systems collect large amounts of data generated in a streaming fashion, which is prone to concept drift. Such data are heterogeneous due to the wide range of sensors collecting information about different characteristics of the monitored systems. All these make the monitoring task very challenging. Traditional clustering algorithms are not well equipped to address the mentioned challenges. In this work, we study the use of MV Multi-Instance Clustering algorithm for multi-view analysis and mining of smart building systems’ sensor data. It is demonstrated how this algorithm can be used to perform contextual as well as integrated analysis of the systems. Various scenarios in which the algorithm can be used to analyze the data generated by the systems of a smart building are examined and discussed in this study. In addition, it is also shown how the extracted knowledge can be visualized to detect trends in the systems’ behavior and how it can aid domain experts in the systems’ maintenance. In the experiments conducted, the proposed approach was able to successfully detect the deviating behaviors known to have previously occurred and was also able to identify some new deviations during the monitored period. Based on the results obtained from the experiments, it can be concluded that the proposed algorithm has the ability to be used for monitoring, analysis, and detecting deviating behaviors of the systems in a smart building domain.


Author(s):  
Mohsen Asghari ◽  
Daniel Sierra-Sosa ◽  
Michael Telahun ◽  
Anup Kumar ◽  
Adel S. Elmaghraby

2009 ◽  
Author(s):  
Bradley M. Davis ◽  
Woodrow W. Winchester ◽  
Jason D. Zedlitz
Keyword(s):  

2018 ◽  
Vol 18 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Jong-Min Kim ◽  
Jaiwook Baik

2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
pp. 91-95
Author(s):  
Philipp Backes ◽  
Jan Fröhlich

Non-regular sampling is a well-known method to avoid aliasing in digital images. However, the vast majority of single sensor cameras use regular organized color filter arrays (CFAs), that require an optical-lowpass filter (OLPF) and sophisticated demosaicing algorithms to suppress sampling errors. In this paper a variety of non-regular sampling patterns are evaluated, and a new universal demosaicing algorithm based on the frequency selective reconstruction is presented. By simulating such sensors it is shown that images acquired with non-regular CFAs and no OLPF can lead to a similar image quality compared to their filtered and regular sampled counterparts. The MATLAB source code and results are available at: http://github. com/PhilippBackes/dFSR


Sign in / Sign up

Export Citation Format

Share Document