2021 ◽  
Vol 11 (2) ◽  
pp. 851
Author(s):  
Wei-Liang Ou ◽  
Tzu-Ling Kuo ◽  
Chin-Chieh Chang ◽  
Chih-Peng Fan

In this study, for the application of visible-light wearable eye trackers, a pupil tracking methodology based on deep-learning technology is developed. By applying deep-learning object detection technology based on the You Only Look Once (YOLO) model, the proposed pupil tracking method can effectively estimate and predict the center of the pupil in the visible-light mode. By using the developed YOLOv3-tiny-based model to test the pupil tracking performance, the detection accuracy is as high as 80%, and the recall rate is close to 83%. In addition, the average visible-light pupil tracking errors of the proposed YOLO-based deep-learning design are smaller than 2 pixels for the training mode and 5 pixels for the cross-person test, which are much smaller than those of the previous ellipse fitting design without using deep-learning technology under the same visible-light conditions. After the combination of calibration process, the average gaze tracking errors by the proposed YOLOv3-tiny-based pupil tracking models are smaller than 2.9 and 3.5 degrees at the training and testing modes, respectively, and the proposed visible-light wearable gaze tracking system performs up to 20 frames per second (FPS) on the GPU-based software embedded platform.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4456
Author(s):  
Sungjae Ha ◽  
Dongwoo Lee ◽  
Hoijun Kim ◽  
Soonchul Kwon ◽  
EungJo Kim ◽  
...  

The efficiency of the metal detection method using deep learning with data obtained from multiple magnetic impedance (MI) sensors was investigated. The MI sensor is a passive sensor that detects metal objects and magnetic field changes. However, when detecting a metal object, the amount of change in the magnetic field caused by the metal is small and unstable with noise. Consequently, there is a limit to the detectable distance. To effectively detect and analyze this distance, a method using deep learning was applied. The detection performances of a convolutional neural network (CNN) and a recurrent neural network (RNN) were compared from the data extracted from a self-impedance sensor. The RNN model showed better performance than the CNN model. However, in the shallow stage, the CNN model was superior compared to the RNN model. The performance of a deep-learning-based (DLB) metal detection network using multiple MI sensors was compared and analyzed. The network was detected using long short-term memory and CNN. The performance was compared according to the number of layers and the size of the metal sheet. The results are expected to contribute to sensor-based DLB detection technology.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5446
Author(s):  
Hyojung Ahn ◽  
Inchoon Yeo

As the workforce shrinks, the demand for automatic, labor-saving, anomaly detection technology that can perform maintenance on advanced equipment such as vehicles has been increasing. In a vehicular environment, noise in the cabin, which directly affects users, is considered an important factor in lowering the emotional satisfaction of the driver and/or passengers in the vehicles. In this study, we provide an efficient method that can collect acoustic data, measured using a large number of microphones, in order to detect abnormal operations inside the machine via deep learning in a quick and highly accurate manner. Unlike most current approaches based on Long Short-Term Memory (LSTM) or autoencoders, we propose an anomaly detection (AD) algorithm that can overcome the limitations of noisy measurement and detection system anomalies via noise signals measured inside the mechanical system. These features are utilized to train a variety of anomaly detection models for demonstration in noisy environments with five different errors in machine operation, achieving an accuracy of approximately 90% or more.


2019 ◽  
Vol 1325 ◽  
pp. 012011
Author(s):  
Guo Tao ◽  
Xu Lianggang ◽  
Shi Hongyun ◽  
Chen Fengxiang ◽  
Wang Shichun ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xinjun Xu ◽  
Yang Lei ◽  
Feng Yang

Railway subgrade defect is the serious threat to train safety. Vehicle-borne GPR method has become the main railway subgrade detection technology with its advantages of rapidness and nondestructiveness. However, due to the large amount of detection data and the variety in defect shape and size, defect recognition is a challenging task. In this work, the method based on deep learning is proposed to recognize defects from the ground penetrating radar (GPR) profile of subgrade detection data. Based on the Faster R-CNN framework, the improvement strategies of feature cascade, adversarial spatial dropout network (ASDN), Soft-NMS, and data augmentation have been integrated to improve recognition accuracy, according to the characteristics of subgrade defects. The experimental results indicates that compared with traditional SVM+HOG method and the baseline Faster R-CNN, the improved model can achieve better performance. The model robustness is demonstrated by a further comparison experiment of various defect types. In addition, the improvements to model performance of each improvement strategy are verified by an ablation experiment of improvement strategies. This paper tries to explore the new thinking for the application of deep learning method in the field of railway subgrade defect recognition.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Di Tian ◽  
Yi Han ◽  
Biyao Wang ◽  
Tian Guan ◽  
Wei Wei

Pedestrian detection is a specific application of object detection. Compared with general object detection, it shows similarities and unique characteristics. In addition, it has important application value in the fields of intelligent driving and security monitoring. In recent years, with the rapid development of deep learning, pedestrian detection technology has also made great progress. However, there still exists a huge gap between it and human perception. Meanwhile, there are still a lot of problems, and there remains a lot of room for research. Regarding the application of pedestrian detection in intelligent driving technology, it is of necessity to ensure its real-time performance. Additionally, it is necessary to lighten the model while ensuring detection accuracy. This paper first briefly describes the development process of pedestrian detection and then concentrates on summarizing the research results of pedestrian detection technology in the deep learning stage. Subsequently, by summarizing the pedestrian detection dataset and evaluation criteria, the core issues of the current development of pedestrian detection are analyzed. Finally, the next possible development direction of pedestrian detection technology is explained at the end of the paper.


Sign in / Sign up

Export Citation Format

Share Document