Squat motion generation for the humanoid robot iCub with Series Elastic Actuators

Author(s):  
Yue Hu ◽  
Francesco Nori ◽  
Katja Mombaur
2021 ◽  
Vol 119 ◽  
pp. 110319
Author(s):  
A. Mohammadi Nejad Rashty ◽  
M. Grimmer ◽  
A. Seyfarth

Mechatronics ◽  
2021 ◽  
Vol 79 ◽  
pp. 102635
Author(s):  
Edgar A. Bolívar-Nieto ◽  
Tyler Summers ◽  
Robert D. Gregg ◽  
Siavash Rezazadeh

2017 ◽  
Vol 14 (01) ◽  
pp. 1650022 ◽  
Author(s):  
Tianwei Zhang ◽  
Stéphane Caron ◽  
Yoshihiko Nakamura

Stair climbing is still a challenging task for humanoid robots, especially in unknown environments. In this paper, we address this problem from perception to execution. Our first contribution is a real-time plane-segment estimation method using Lidar data without prior models of the staircase. We then integrate this solution with humanoid motion planning. Our second contribution is a stair-climbing motion generator where estimated plane segments are used to compute footholds and stability polygons. We evaluate our method on various staircases. We also demonstrate the feasibility of the generated trajectories in a real-life experiment with the humanoid robot HRP-4.


Sign in / Sign up

Export Citation Format

Share Document