A real-time remaining useful life estimation method based on changepoint detection

Author(s):  
Jian-Fei Zheng ◽  
Chang-Hua Hu ◽  
Qi Zhang ◽  
Zheng-Xin Zhang
2020 ◽  
Vol 10 (21) ◽  
pp. 7836
Author(s):  
Cher Ming Tan ◽  
Preetpal Singh ◽  
Che Chen

Inaccurate state-of-health (SoH) estimation of battery can lead to over-discharge as the actual depth of discharge will be deeper, or a more-than-necessary number of charges as the calculated SoC will be underestimated, depending on whether the inaccuracy in the maximum stored charge is over or under estimated. Both can lead to increased degradation of a battery. Inaccurate SoH can also lead to the continuous use of battery below 80% actual SoH that could lead to catastrophic failures. Therefore, an accurate and rapid on-line SoH estimation method for lithium ion batteries, under different operating conditions such as varying ambient temperatures and discharge rates, is important. This work develops a method for this purpose, and the method combines the electrochemistry-based electrical model and semi-empirical capacity fading model on a discharge curve of a lithium-ion battery for the estimation of its maximum stored charge capacity, and thus its state of health. The method developed produces a close form that relates SoH with the number of charge-discharge cycles as well as operating temperatures and currents, and its inverse application allows us to estimate the remaining useful life of lithium ion batteries (LiB) for a given SoH threshold level. The estimation time is less than 5 s as the combined model is a closed-form model, and hence it is suitable for real time and on-line applications.


Author(s):  
Rosmawati Jihin ◽  
Dirk Söffker

Abstract In this paper, the establishment of a prognostic approach based on a nonlinear degradation model for reliability assessment focusing on health state and remaining useful life estimation is considered. A model able to describe the non-linearity of degradation to predict future damage progression for real-time application has to be defined. Real-time data are generated during operation, so incomplete data about failure and usage up to the end of life are expected. For the accurate prediction of system lifetime, estimation of future degradation from the point of assessment is required. At this point, the unavailable data are numerically calculated by integrating linearized gradients adaptively by considering nonlinearity in current degradation. The coefficients used to define future degradation gradients are identified according to different states assuming future linear degradation increments. These coefficients are determined using an optimization-based algorithm simultaneously with the calculation of consumed lifetime by extending the previously established state machine lifetime model. For performance evaluation of the approach, the effectiveness of predicting remaining useful life using tribological experiments data is investigated. The results show the potential of this approach to deal with nonlinearity in the degradation progression.


2020 ◽  
Vol 14 ◽  
Author(s):  
Dangbo Du ◽  
Jianxun Zhang ◽  
Xiaosheng Si ◽  
Changhua Hu

Background: Remaining useful life (RUL) estimation is the central mission to the complex systems’ prognostics and health management. During last decades, numbers of developments and applications of the RUL estimation have proliferated. Objective: As one of the most popular approaches, stochastic process-based approach has been widely used for characterizing the degradation trajectories and estimating RULs. This paper aimed at reviewing the latest methods and patents on this topic. Methods: The review is concentrated on four common stochastic processes for degradation modelling and RUL estimation, i.e., Gamma process, Wiener process, inverse Gaussian process and Markov chain. Results: After a briefly review of these four models, we pointed out the pros and cons of them, as well as the improvement direction of each method. Conclusion: For better implementation, the applications of these four approaches on maintenance and decision-making are systematically introduced. Finally, the possible future trends are concluded tentatively.


Sign in / Sign up

Export Citation Format

Share Document