The effect of diodes integrated on radiating patch or ground plane of frequency reconfigurable antenna on antenna performance - a Comparison study

Author(s):  
Alaa Imran Al-Muttairi ◽  
Malik Jasim Farhan
2018 ◽  
Vol 69 (4) ◽  
pp. 293-299 ◽  
Author(s):  
Boddapati T. P. Madhav ◽  
Shaik Rajiya ◽  
Badugu P. Nadh ◽  
Munuswami S. Kumar

Abstract In this article a compact frequency reconfigurable antenna is presented for wireless communication applications of industrial, scientific and medical band (ISM). The proposed antenna model is designed with the dimensions of 58mm×48 mm on FR4 epoxy of dielectric constant 4.4 with the thickness of 0.8 mm. The proposed antenna consists of defected T-shape ground plane, which acts as a reflector. In the design of frequency reconfigurable antenna, BAR 64-02V PIN diodes are used as switching elements and antenna is fed by microstrip transmission line. The proposed antenna can switch at different frequencies (2.5 GHz, 2.3 GHz and 2.2 GHz) depending on the biasing voltage applied to the PIN diodes. The current antenna showing VSWR < 2 in the operating band and providing peak realized gain of 3.2 dBi. A good matching obtained between expected and the measured results.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 127 ◽  
Author(s):  
A Vamseekrishna ◽  
B T P Madhav

A compact coplanar waveguide fed reconfigurable antenna with three notch bands are presented in this paper. Proposed antenna reconfigurability is acquired by placing bar6404 PIN diodes in the S-shaped ground plane in right to left mode and left to right mode. By switching the diode, reconfigurability achieved for three different operations. The substrate material for the proposed antenna is FR4 with dielectric constant 4.4 and loss tangent 0.02. The overall dimension of the reconfigurable antenna is around 30×26mm2. It is being observed in this work for the cause of each individual slot on notch band characteristics. The measured gain for the designed reconfigurable antenna is quite stable at operating frequencies except notch bands. The proposed antenna is suitable for practical wideband applications with notching.


Author(s):  
Yu Qi ◽  
◽  
Yi-hu Xu

The development of 5G New Radio (NR) is widely concerned. In order to solve the problem of working frequency band, a design scheme of frequency reconfigurable antenna module covering 3.5 GHz and 4.9 GHz frequency band is proposed in this paper. It can be applied to 3.4-3.6 GHz band and 4.8-5.0 GHz band, which can meet the application of sub 6GHz band in 5G communication. The antenna module adopts a feed port, a tune stub, and five switches which can realize frequency reconfiguration. In this paper, the analysis of the parameters of the ground plane and the length of the tune stub is given, and the discussions of the S-parameter, the simulated electrical field distributions, the radiation pattern, the voltage standing wave ratio (VSWR) and the Smith chart are also given, which proves the practicability of the proposed antenna. The size of the antenna module is suitable and the performance is excellent.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3026
Author(s):  
Minjae Lee ◽  
Sukwon Lee ◽  
Sungjoon Lim

Electromagnetic responses are generally controlled electrically or optically. However, although electrical and optical control allows fast response, they suffer from switching or tuning range limitations. This paper controls electromagnetic response by mechanical transformation. We introduce a novel kirigami-inspired structure for mechanical transformation with less strength, integrating a shape memory alloy actuator into the kirigami-inspired for mechanical transformation and hence electromagnetic control. The proposed approach was implemented for a reconfigurable antenna designed based on structural and electromagnetic analyses. The mechanical transformation was analyzed with thermal stimulus to predict the antenna geometry and electromagnetic analysis with different geometries predicted antenna performance. We numerically and experimentally verified that resonance response was thermally controlled using the kirigami-inspired antenna integrated with a shape memory alloy actuator.


Sign in / Sign up

Export Citation Format

Share Document