The Critical Path from Tissue Slices to Surgical Simulation: What Do Surgeons Want?

Author(s):  
Wm. LeRoy Heinrichs
1999 ◽  
Vol 91 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Toru Koyama ◽  
Hiroshi Okudera ◽  
Hirohiko Gibo ◽  
Shigeaki Kobayashi

✓ The authors' goal was to develop a computer graphics model to represent the microsurgical anatomy of the basilar artery (BA) bifurcation and surrounding structures to simulate surgery of a BA bifurcation aneurysm performed via the transsylvian approach.The source of the input data was a variety of publications that showed detailed anatomy of the area. A computer graphics model of the area near the BA bifurcation including relevant structures, such as perforating branches or cranial nerves, was depicted in detail. A BA bifurcation aneurysm was added to the computer graphics model and it was rotated to simulate the transsylvian approach. After the internal carotid artery was displaced using a virtual retractor, the aneurysm was exposed, thus providing an understanding of the three-dimensional surgical orientation of the area.Designing a standard anatomical model on the basis of data culled from a variety of publications and adding morphological changes by using a virtual retractor to displace structures that obstruct the view along a critical path at the base of the brain are useful strategies of computer manipulation for surgical simulation in open microneurosurgery. This methodological tool would be useful in teaching surgical microanatomy and in introducing a new navigational system for virtual reality. Both concept and technical details are discussed.


Author(s):  
Hakan Ancin

This paper presents methods for performing detailed quantitative automated three dimensional (3-D) analysis of cell populations in thick tissue sections while preserving the relative 3-D locations of cells. Specifically, the method disambiguates overlapping clusters of cells, and accurately measures the volume, 3-D location, and shape parameters for each cell. Finally, the entire population of cells is analyzed to detect patterns and groupings with respect to various combinations of cell properties. All of the above is accomplished with zero subjective bias.In this method, a laser-scanning confocal light microscope (LSCM) is used to collect optical sections through the entire thickness (100 - 500μm) of fluorescently-labelled tissue slices. The acquired stack of optical slices is first subjected to axial deblurring using the expectation maximization (EM) algorithm. The resulting isotropic 3-D image is segmented using a spatially-adaptive Poisson based image segmentation algorithm with region-dependent smoothing parameters. Extracting the voxels that were labelled as "foreground" into an active voxel data structure results in a large data reduction.


2005 ◽  
Vol 43 (01) ◽  
Author(s):  
HU Kasper ◽  
E Konze ◽  
D Stippel ◽  
U Drebber ◽  
HP Dienes

Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 256-259
Author(s):  
P.Balasowandari ◽  
Dr. V.Anusuya

Author(s):  
Totska Olesia ◽  
Glovatsky Anastasia

The purpose of the article is to plan a project of an electric vehicle technicalassistance point. the methodology of the study is to use the critical path method.the scientific novelty of the obtained results is that the article describes the practicalaspects of project planning of the creation of an electric vehicle technical assistancepoint. In particular, the tasks of the project are described, labor, material and financialresources necessary for its realization are specified. conclusions. The implementationof the developed project will effectively manage the content, time and resources ofthe project of the creation of an electric vehicle technical assistance point.


Author(s):  
R. Irawan

Leap frog concept was created to address the loss of single joint rig agility and drive the cycle time average lower than ever. The idea is to move the preparation step into a background activity that includes moving the equipment, killing the well, dismantling the wellhead and installing the well control equipment/BOP before the rig came in. To realize the idea, a second set of equipment is provided along with the manpower. By moving the preparation step, the goal is to eliminate a 50% portion of the job from the critical path. The practice is currently performed in tubing pump wells on land operations. However, the work concept could be implemented for other type of wells, especially ESP wells. After implementation, the cycle time average went down from 18 hours to 11 hours per job, or down by ~40%. The toolpusher also reports more focused operations due to reduced scope and less crew to work with, making the leap frog operation safer and more reliable. Splitting the routine services into 2 parts not only shortened the process but it also reduces noise that usually appear in the preparation process. The team are rarely seen waiting on moving support problems that were usually seen in the conventional process. Having the new process implemented, the team had successfully not only lowered cycle time, but also eliminated several problems in one step. Other benefits from leap frog implementation is adding rig count virtually to the actual physical rig available on location, and also adding rig capacity and completing more jobs compared to the conventional rig. In other parts, leap frog faced some limitation and challenges, such as: limited equipment capability for leap frog remote team to work on stuck plunger, thus hindering its leap frog capability, and working in un-restricted/un-clustered area which disturb the moving process and operation safety.


Sign in / Sign up

Export Citation Format

Share Document