Pressure feedback reduced-order dynamic compensation for axial flow compression systems

Author(s):  
W.M. Haddad ◽  
J.R. Corrado ◽  
A. Leonessa
2002 ◽  
Vol 10 (5) ◽  
pp. 727-734 ◽  
Author(s):  
W.M. Haddad ◽  
J.R. Corrado ◽  
A. Leonessa

Author(s):  
Kiran Singh ◽  
Sébastien Michelin ◽  
Emmanuel De Langre

The problem of energy harvesting from flutter instabilities in flexible slender structures in axial flows is considered. In a recent study, we used a reduced-order theoretical model of such a system to demonstrate the feasibility for harvesting energy from these structures. Following this preliminary study, we now consider a continuous fluid-structure system. Energy harvesting is modelled as strain-based damping, and the slender structure under investigation lies in a moderate fluid loading range, for which the flexible structure may be destabilized by damping. The key goal of this work is to analyse the effect of damping distribution and intensity on the amount of energy harvested by the system. The numerical results indeed suggest that non-uniform damping distributions may significantly improve the power-harvesting capacity of the system. For low-damping levels, clustered dampers at the position of peak curvature are shown to be optimal. Conversely for higher damping, harvesters distributed over the whole structure are more effective.


1999 ◽  
Vol 122 (3) ◽  
pp. 393-401 ◽  
Author(s):  
MingQing Xiao ◽  
Tamer Bas¸ar

The paper studies the behavior of multi-mode systems of the Moore-Greitzer model. Its main result is the existence of a parameterized nonlinear state feedback controller which stabilizes the system to the right of the peak of the compressor characteristic. In this process, a rotating stall envelope surface is discovered, and it is shown that the controller design achieves the tasks of preventing the closed-loop system from entering either rotating stall or surge, and making the closed-loop pressure rise coefficient be able to approach its maximum. Numerical simulations of the open-loop and closed-loop models are presented to illustrate the analysis and the results. [S0022-0434(00)00803-0]


1980 ◽  
Vol 102 (1) ◽  
pp. 162-168 ◽  
Author(s):  
R. S. Mazzawy

The axial flow compression system of a modern gas turbine engine normally delivers a large quantity of airflow at relatively high velocity. The sudden stoppage (and reversal) of this flow when an engine surges can result in structural loads in excess of steady state levels. These loads can be quite complex due to inherent asymmetry in the surge event. The increasing requirements for lighter weight engine structures, coupled with the higher pressure ratio cycles required for minimizing fuel consumption, make the accurate prediction of these loads an important part of the engine design process. This paper is aimed toward explaining the fluid mechanics of the surge phenomenon and its impact on engine structures. It offers relatively simple models for estimating surge-induced loads on various engine components. The basis for these models is an empirical correlation of surge-induced inlet overpressure based on engine pressure ratio and bypass ratio. An approximate estimate of the post-surge axial pressure distribution can be derived from this correlation by assuming that surge initiation occurs in the rear of the compression system.


Author(s):  
Robert L. Behnken ◽  
Mina Leung ◽  
Richard M. Murray

Previous work has developed an air injection controller for rotating stall based on the idea of a shifting compressor characteristic and the Moore-Greitzer three state compressor model. In order to demonstrate this form of control experimentally, a series of open loop tests were performed to measure the performance characteristics of a low speed axial flow compression system when air is injected upstream of the rotor face. The position of the air injection port relative to the hub and the rotor face and the angle relative to the mean axial flow were varied. The tests show that the injection of air has drastic effects on the stalling mass flow rate and on the size of the hysteresis loop associated with rotating stall. The stalling mass flow rate was decreased by 10% and the hysteresis loop was completely eliminated under some conditions. The results of the open loop parametric study were then used to implement a closed loop control strategy based on a shifting characteristic.


Sign in / Sign up

Export Citation Format

Share Document