Analysis and Control of Multi-Mode Axial Flow Compression System Models1

1999 ◽  
Vol 122 (3) ◽  
pp. 393-401 ◽  
Author(s):  
MingQing Xiao ◽  
Tamer Bas¸ar

The paper studies the behavior of multi-mode systems of the Moore-Greitzer model. Its main result is the existence of a parameterized nonlinear state feedback controller which stabilizes the system to the right of the peak of the compressor characteristic. In this process, a rotating stall envelope surface is discovered, and it is shown that the controller design achieves the tasks of preventing the closed-loop system from entering either rotating stall or surge, and making the closed-loop pressure rise coefficient be able to approach its maximum. Numerical simulations of the open-loop and closed-loop models are presented to illustrate the analysis and the results. [S0022-0434(00)00803-0]

Author(s):  
Robert L. Behnken ◽  
Mina Leung ◽  
Richard M. Murray

Previous work has developed an air injection controller for rotating stall based on the idea of a shifting compressor characteristic and the Moore-Greitzer three state compressor model. In order to demonstrate this form of control experimentally, a series of open loop tests were performed to measure the performance characteristics of a low speed axial flow compression system when air is injected upstream of the rotor face. The position of the air injection port relative to the hub and the rotor face and the angle relative to the mean axial flow were varied. The tests show that the injection of air has drastic effects on the stalling mass flow rate and on the size of the hysteresis loop associated with rotating stall. The stalling mass flow rate was decreased by 10% and the hysteresis loop was completely eliminated under some conditions. The results of the open loop parametric study were then used to implement a closed loop control strategy based on a shifting characteristic.


2013 ◽  
Vol 462-463 ◽  
pp. 782-787
Author(s):  
Xun Zhong Quan ◽  
Xiao Wei Liao ◽  
Yan Wu ◽  
Li Wang

Ccording to the running speed of ultrasonic motor instability, design a motor testing system, the closed-loop controller embedded improved neural networkalgorithm, to suppress chaos. In open-loop state, input constant parameters to the motor, the motor rotating speed detection, the test data is chaotic analysis,found the speed has chaotic characteristics; in the closed-loop state, the feedback signal through the controller for processing, effectively inhibited theultrasonic motor speed jitter phenomenon, so as to improve the smoothness of motion motor. Experimental results show that, the neural network controller design not only significantly inhibited motor chaotic jitter phenomenon, but also has good anti-interference ability.


Author(s):  
Hanseung Woo ◽  
Kyoungchul Kong

Safety is one of important factors in control of mechatronic systems interacting with humans. In order to evaluate the safety of such systems, mechanical impedance is often utilized as it indicates the magnitude of reaction forces when the systems are subjected to motions. Namely, the mechatronic systems should have low mechanical impedance for improved safety. In this paper, a methodology to design controllers for reduction of mechanical impedance is proposed. For the proposed controller design, the mathematical definition of the mechanical impedance for open-loop and closed-loop systems is introduced. Then the controllers are designed for stable and unstable systems such that they effectively lower the magnitude of mechanical impedance with guaranteed stability. The proposed method is verified through case studies including simulations.


2000 ◽  
Author(s):  
Craig A. Buhr ◽  
Matthew A. Franchek ◽  
Sanford Fleeter

Abstract Presented in this paper is an analytical study evaluating the closed loop stability of rotating stall control in an axial flow compressor subject to a nonlinear spatial actuation constraint that limits the amplitude of a spatial mode input. Absolute stability of the rotating stall control system is investigated by applying the circle criterion to a linearized model of an axial compressor in series with the saturation element. This stability analysis is then used to design the gain and phase of the ‘classical’ complex gain feedback control law. Resulting is a systematic method for designing the parameters of the complex gain control law which increases the region of absolute stability guaranteed by the circle criterion for the closed-loop system.


2015 ◽  
Vol 798 ◽  
pp. 261-265
Author(s):  
Miao Yu ◽  
Chao Lu

Identification and control are important problems of power system based on ambient signals. In order to avoid the model error influence of the controller design, a new iterative identification and control method is proposed in this paper. This method can solve model set and controller design of closed-loop power system. First, an uncertain model of power system is established. Then, according to the stability margin of power system, stability theorem is put forward. And then controller design method and the whole algorithm procedure are given. Simulation results show the effective performance of the proposed method based on the four-machine-two-region system.


Author(s):  
Gustave J. Rath ◽  
William P. Allman

This paper discusses the use of computing machines in the biological and social sciences, namely the ultilization of computerized behavior analysis systems in the quantification of human behavior. Only systems of which living human organisms are a part are considered. Some specific functional uses of computers for stimulus preparation and presentation, response collection, and apparatus scheduling and control are presented. All of these functions may be performed by automated systems characterized by the amount of experimental integration and control performed by the computer. Systems types include on-line open-loop, on-line closed loop single or multiple purpose, and off-line. The multiple-man, multiple-purpose system which permits numerous automated investigations upon different source subjects to occur simultaneously is highlighted as the culmination of current automated behavioral analysis systems. But the possibility of behavioral scientists “tapping” into operating systems is presented as possibly having revolutionary consequences with respect to the data gathering of human behaviour. Finally, a general automated behavioral analysis system schematic assists in discussing current advantages, potential advances, and impending limitations of contributions of computers to the quantification of human behavior.


Author(s):  
William J. Emblom

Methods for improving the robustness of panel forming including the introduction of process sensing and feedback and control has resulted in significant gains in the quality of parts and reduced failures. Initial efforts in implementing closed-loop control during panel forming used active tool elements to ensure that the total punch force followed prescribed trajectories. However, more recently local forces within the tooling have been demonstrated to not only follow desired force trajectories but have been shown to increase the operational envelope of the tooling compared to open-loop tests and even closed-loop test where the total punch force had been controlled. However, what has not been examined is the effect of local force, especially during closed-loop control panel forming operations on the total punch force measured during forming. This paper addresses this by comparing the results of both open-loop tests and closed-loop tests and examining the effects on both local and total punch forces. It was found that while open-loop forming with various constant draw bead depths resulted in varying total punch forces, once closed-loop control was implemented the total punch forces followed virtually identical trajectories. The tooling for this project included local force transducers and a total punch force transducer. In addition, active draw beads could be controlled during forming and a flexible blank holder with variable blank holder forces were part of the setup.


Author(s):  
Shiming Duan ◽  
Jun Ni ◽  
A. Galip Ulsoy

Piecewise affine (PWA) systems belong to a subclass of switched systems and provide good flexibility and traceability for modeling a variety of nonlinear systems. In this paper, application of the PWA system framework to the modeling and control of an automotive all-wheel drive (AWD) clutch system is presented. The open-loop system is first modeled as a PWA system, followed by the design of a piecewise linear (i.e., switched) feedback controller. The stability of the closed-loop system, including model uncertainty and time delays, is examined using linear matrix inequalities based on Lyapunov theory. Finally, the responses of the closed-loop system under step and sine reference signals and temperature disturbance signals are simulated to illustrate the effectiveness of the design.


Sign in / Sign up

Export Citation Format

Share Document