CS-CS stream media low-level synchronization control mechanism

Author(s):  
Liang He ◽  
Ping Cai ◽  
Jin Zhou
Author(s):  
Ryan Saptarshi Ray

Current parallel programming uses low-level programming constructs like threads and explicit synchronization (for example, locks, semaphores and monitors) to coordinate thread execution which makes these programs difficult to design, program and debug. In this paper we present Software Transactional Memory (STM) which is a promising new approach for programming in parallel processors having shared memory. It is a concurrency control mechanism that is widely considered to be easier to use by programmers than other mechanisms such as locking. It allows portions of a program to execute in isolation, without regard to other, concurrently executing tasks. A programmer can reason about the correctness of code within a transaction and need not worry about complex interactions with other, concurrently executing parts of the program.


2012 ◽  
Vol 05 (12) ◽  
pp. 8-13
Author(s):  
Wei Jiang ◽  
Liming Meng ◽  
Songxiang Ying ◽  
Hong Peng ◽  
Zhijiang Xu

Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.


2006 ◽  
Vol 76 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Yukari Egashira ◽  
Shin Nagaki ◽  
Hiroo Sanada

We investigated the change of tryptophan-niacin metabolism in rats with puromycin aminonucleoside PAN-induced nephrosis, the mechanisms responsible for their change of urinary excretion of nicotinamide and its metabolites, and the role of the kidney in tryptophan-niacin conversion. PAN-treated rats were intraperitoneally injected once with a 1.0% (w/v) solution of PAN at a dose of 100 mg/kg body weight. The collection of 24-hour urine was conducted 8 days after PAN injection. Daily urinary excretion of nicotinamide and its metabolites, liver and blood NAD, and key enzyme activities of tryptophan-niacin metabolism were determined. In PAN-treated rats, the sum of urinary excretion of nicotinamide and its metabolites was significantly lower compared with controls. The kidneyα-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) activity in the PAN-treated group was significantly decreased by 50%, compared with the control group. Although kidney ACMSD activity was reduced, the conversion of tryptophan to niacin tended to be lower in the PAN-treated rats. A decrease in urinary excretion of niacin and the conversion of tryptophan to niacin in nephrotic rats may contribute to a low level of blood tryptophan. The role of kidney ACMSD activity may be minimal concerning tryptophan-niacin conversion under this experimental condition.


1983 ◽  
Vol 28 (1) ◽  
pp. 79-79
Author(s):  
Claire B. Ernhart

Author(s):  
Raymond F. Genovese ◽  
◽  
Sara J. Shippee ◽  
Jessica Bonnell ◽  
Bernard J. Benton ◽  
...  

1992 ◽  
Author(s):  
Kathy McCloskey ◽  
William B. Albery ◽  
Greg Zehner ◽  
Stephen D. Bolia
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document