Role of the Cilia Membrane in Control of Microtubule Sliding

Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.

1998 ◽  
Vol 275 (3) ◽  
pp. C790-C797 ◽  
Author(s):  
Alex Braiman ◽  
Orna Zagoory ◽  
Zvi Priel

The intent of this work was to evaluate the role of cAMP in regulation of ciliary activity in frog mucociliary epithelium and to examine the possibility of cross talk between the cAMP- and Ca2+-dependent pathways in that regulation. Forskolin and dibutyryl cAMP induced strong transient intracellular Ca2+ concentration ([Ca2+]i) elevation and strong ciliary beat frequency enhancement with prolonged stabilization at an elevated plateau. The response was not affected by reduction of extracellular Ca2+concentration. The elevation in [Ca2+]iwas canceled by pretreatment with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM, thapsigargin, and a phospholipase C inhibitor, U-73122. Under those experimental conditions, forskolin raised the beat frequency to a moderately elevated plateau, whereas the initial strong rise in frequency was completely abolished. All effects were canceled by H-89, a selective protein kinase A (PKA) inhibitor. The results suggest a dual role for PKA in ciliary regulation. PKA releases Ca2+ from intracellular stores, strongly activating ciliary beating, and, concurrently, produces moderate prolonged enhancement of the beat frequency by a Ca2+-independent mechanism.


1985 ◽  
Vol 100 (5) ◽  
pp. 1447-1454 ◽  
Author(s):  
S Nakamura ◽  
S L Tamm

Previous work showed that ctenophore larvae swim backwards in high-KCl seawater, due to a 180 degrees reversal in the direction of effective stroke of their ciliary comb plates (Tamm, S. L., and S. Tamm, 1981, J. Cell Biol., 89: 495-509). Ion substitution and blocking experiments indicated that this response is Ca2+ dependent, but comb plate cells are innervated and presumably under nervous control. To determine whether Ca2+ is directly involved in activating the ciliary reversal mechanism and/or is required for synaptic triggering of the response, we (a) determined the effects of ionophore A23187 and Ca2+ on the beat direction of isolated nerve-free comb plates dissociated from larvae by hypotonic, divalent cation-free medium, and (b) used permeabilized ATP-reactivated models of comb plates to test motile responses to known concentrations of free Ca2+. We found that 5 microM A23187 and 10 mM Ca2+ induced dissociated comb plate cells to beat in the reverse direction and to swim counterclockwise in circular paths instead of in the normal clockwise direction. Detergent/glycerol-extracted comb plates beat actively in the presence of ATP, and reactivation was reversibly inhibited by micromolar concentrations of vanadate. Free Ca2+ concentrations greater than 10(-6)M caused reversal in direction of the effective stroke but no significant increase in beat frequency. These results show that ciliary reversal in ctenophores, like that in protozoa, is activated by an increase in intracellular free Ca2+ ions. This allows the unique experimental advantages of ctenophore comb plate cilia to be used for future studies on the site and mechanism of action of Ca2+ in the regulation of ciliary motion.


1973 ◽  
Vol 61 (5) ◽  
pp. 572-587 ◽  
Author(s):  
Hans Machemer ◽  
Roger Eckert

Quantitative relations between ciliary reversal and membrane responses were examined in electrically stimulated paramecia. Specimens bathed in 1 mM CaCl2, 1 mM KCl, and 1 mM Tris-HCl, pH 7.2, were filmed at 250 frames per second while depolarizing current pulses were injected. At current intensities producing only electrotonic shifts the cilia failed to respond. Stimuli which elicited a regenerative response were followed by a period of reversed ciliary beating. With increasing stimulus intensities the latency of ciliary reversal dropped from 30 to 4 ms or less, and the duration of reversal increased from 50 ms to 2.4 s or more; the corresponding regenerative responses increased in amplitude and rate of rise. With progressively larger intracellular positive pulses, electric stimulation became less effective, producing responses with a progressive increase in latency and decrease in duration of reversed beating of the cilia. When 100-ms pulses shifted the membrane potential to +70 mV or more, ciliary reversal was suppressed until the end of the pulse. "Off" responses then occurred with a latency of 2–4 ms independent of further increases in positive potential displacement. These results suggest that ciliary reversal is coupled to membrane depolarization by the influx of ions which produces the regenerative depolarization of the surface membrane. According to this view suppression of the ciliary response during stimulation occurs when the membrane potential approaches the equilibrium potential of the coupling ion, thereby retarding its influx. Previous data together with the present findings suggest that this ion is Ca2+.


2010 ◽  
Vol 21 (21) ◽  
pp. 3669-3679 ◽  
Author(s):  
Panteleimon Rompolas ◽  
Ramila S. Patel-King ◽  
Stephen M. King

Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.


1985 ◽  
Vol 77 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Y. Nakaoka ◽  
H. Ooi

A Triton-extracted model of Paramecium swims forwards when the Ca2+ concentration in the reactivation medium containing ATP is below 10(−6) M and swims backwards when Ca2+ concentration is above 10(−6) M. We found that cAMP (adenosine 3′:5′-cyclic monophosphoric acid) inhibited Ca-induced backward swimming of the model and caused forward swimming even when the [Ca2+] was above 10(−6) M. This effect of cAMP was abolished by an inhibitor of cAMP-dependent protein kinase. In order to study the possible role of phosphorylation in the regulation of ciliary orientation, ATP in the reactivation medium was replaced by an ATP analogue, ARP gamma S (adenosine 5′-O-3-thiotriphosphate), which irreversibly thiophosphorylates proteins. In ATP gamma S medium, the model ceased both swimming and ciliary beating, but the orientation of cilia was dependent on [Ca2+]. At low [Ca2+], cilia were perpendicular to the cell surface and, with increase in [Ca2+], their orientation gradually changed towards the cell anterior. Such a change in ciliary orientation corresponds roughly to the change in the swimming direction observed in ATP medium. The ciliary orientation towards the anterior of the cell in ATP gamma S medium at high [Ca2+] was maintained when [Ca2+] was decreased. In contrast, in ATP medium, the swimming direction was reversibly changed with changes in [Ca2+]. These results suggest that the ciliary orientation is regulated not only by Ca2+ but also by cAMP, probably via protein phosphorylation.


2001 ◽  
Vol 204 (6) ◽  
pp. 1063-1071 ◽  
Author(s):  
M. Noguchi ◽  
T. Sawada ◽  
T. Akazawa

The energy supply for eukaryotic ciliary and flagellar movement is thought to be maintained by ATP-regenerating enzymes such as adenylate kinase, creatine kinase and arginine kinase. In this study, the energy-supplying system for the ciliary movement of Paramecium caudatum was examined. Arginine kinase and adenylate kinase activities were detected in the cilia. To demonstrate that phosphoarginine satisfactorily supplies high-energy phosphate compounds into the narrow ciliary space, we prepared an intact ciliated cortical sheet from live Paramecium caudatum. These cortical sheets, with an intact ciliary membrane, produced a half-closed system in which each cilium was covered with a ciliary membrane with an opening to the cell body. Ciliary beating on the intact cortical sheets was induced by perfusing not only ATP but also ADP. Addition of phosphoarginine (0.2 mmol l(−1)) increased the beat frequency. A further increase in beat frequency was observed in 0.4 mmol l(−1) phosphoarginine, and this was enhanced when the cilia were reactivated with relatively low concentrations of ATP. We have demonstrated that phosphoarginine supplies energy as a ‘phosphagen’ for ciliary beating in Paramecium caudatum, suggesting that phosphoarginine functions not only as a reservoir of energy but also as a transporter of energy in these continuously energy-consuming circumstances. http://www.biologists.com/JEB/movies/jeb3123.html


1997 ◽  
Vol 200 (11) ◽  
pp. 1593-1606 ◽  
Author(s):  
B Lowe

Motile, mechanoresponsive cilia (balancers) in ctenophore statocysts, like vertebrate hair cells, are excited or inhibited depending upon the direction in which they are deflected. Balancers, however, may become either excited (beat rapidly) or inhibited (beat slowly) by deflection in the same direction, depending on the sign of ctenophore geotaxis (positive or negative). The beat frequency of many cilia is controlled by concentrations of Ca2+, membrane potential and neural input. How these factors affect deflection-induced ciliary beating in balancers was investigated. Deflection-induced excitation of balancers in whole Mnemiopsis leidyi larvae and dissected adult (Mnemiopsis leidyi, Pleurobrachia pileus) statocysts was reversibly inhibited by the Ca2+ channel inhibitors Co2+, Mg2+, Ni2+, and Mn2+. Deflection-induced excitation in balancers of isolated adult M. leidyi balancer groups was also inhibited by Co2+ or by Ca(2+)-free medium. Isolated balancer group cilia, like balancer cilia of intact ctenophores, exhibited responses to either sign of geotaxis and graded responses to deflection. Isolated balancers that were chemically depolarized in high-[K+], Ca(2+)-free medium were excited by local application of Ca2+ onto the ciliary bases, but not onto the cell bases or the ciliary tips. It is proposed that deflection-induced excitation of balancers is due to influx of Ca2+ through stretch- and voltage-activated channel activity. The sign of geotaxis of whole larvae and dissected adult statocysts was switched by electrical stimulation. Thus, neural input may participate in reversing the directional sensitivity of balancer cells.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009388
Author(s):  
Rafał Bazan ◽  
Adam Schröfel ◽  
Ewa Joachimiak ◽  
Martyna Poprzeczko ◽  
Gaia Pigino ◽  
...  

Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.


Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Sign in / Sign up

Export Citation Format

Share Document