Minimax Controller Design Based on AQM $$ Scheme for TCP Network Systems

Author(s):  
Kun Wang ◽  
Yuanwei Jing ◽  
Siying Zhang
2018 ◽  
Vol 210 ◽  
pp. 03005 ◽  
Author(s):  
Yuanwei Jing ◽  
Zanhua Li ◽  
Georgi Dimirovski

The congestion control problem for TCP network systems with UDP flows is considered. A nonlinear TCP network model with strict-feedback structure is established. The unknown UDP flow is considered as the disturbance to the system, and the maximum UDP flow is calculated by using the minimax approach. And then, a congestion control algorithm is proposed by using backstepping approach. Further, a state-feedback congestion controller is presented to make the TCP networks asymptotically stable. The simulation results show the superiority and feasibility of the proposed method.


Author(s):  
Ehsan Omidi ◽  
S. Nima Mahmoodi

This paper discusses the concept of a new methodology for active vibration control of flexible structures using consensus control of network systems. In the new approach, collocated actuation/sensingpatches communicate with one another through a network with certain directed topology. A virtual leader is assigned to enforce the vibration amplitude at the place of each agent to zero. Since the modal states of the system are not available for the vibration control task, individual optimal observers are designed for each agent first. After describing the controller and examining the stability of the system, controller performance is verified using a clamped-clamped thin aluminum beam. According to the obtained numerical results, the new control approach successfully suppresses the vibration amplitudes, while the consensus design ensures that all agents are synchronized during the performance.


Sign in / Sign up

Export Citation Format

Share Document