Study of Detection Method on Real-time and High Precision Driver Seatbelt

Author(s):  
Dongsheng Yang ◽  
Ying Zang ◽  
Qingshan Liu
2014 ◽  
Vol 599-601 ◽  
pp. 1829-1832
Author(s):  
Xue Yuan Chen ◽  
Xia Fu Lv ◽  
Jie Liu

The objective of this paper is to build a system for pedestrian detection in an outdoor environment. The contribution of this paper is the detection method that integrates the silhouette edge information with patterns of motion in each frame of the image sequence. The test results show that the high-precision, good adaptability, and real-time performance of the proposed method.


2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Tong Wang

The compaction quality of the subgrade is directly related to the service life of the road. Effective control of the subgrade construction process is the key to ensuring the compaction quality of the subgrade. Therefore, real-time, comprehensive, rapid and accurate prediction of construction compaction quality through informatization detection method is an important guarantee for speeding up construction progress and ensuring subgrade compaction quality. Based on the function of the system, this paper puts forward the principle of system development and the development mode used in system development, and displays the development system in real-time to achieve the whole process control of subgrade construction quality.


2010 ◽  
Vol 130 (11) ◽  
pp. 2039-2046
Author(s):  
Munetoshi Numada ◽  
Masaru Shimizu ◽  
Takuma Funahashi ◽  
Hiroyasu Koshimizu

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 61570-61580 ◽  
Author(s):  
Weichen Li ◽  
Junying Xia ◽  
Ge Zhang ◽  
Hang Ma ◽  
Benyuan Liu ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jinkang Wang ◽  
Xiaohui He ◽  
Shao Faming ◽  
Guanlin Lu ◽  
Hu Cong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Yong Park ◽  
Gina Faraci ◽  
Pamela M. Ward ◽  
Jane F. Emerson ◽  
Ha Youn Lee

AbstractCOVID-19 global cases have climbed to more than 33 million, with over a million total deaths, as of September, 2020. Real-time massive SARS-CoV-2 whole genome sequencing is key to tracking chains of transmission and estimating the origin of disease outbreaks. Yet no methods have simultaneously achieved high precision, simple workflow, and low cost. We developed a high-precision, cost-efficient SARS-CoV-2 whole genome sequencing platform for COVID-19 genomic surveillance, CorvGenSurv (Coronavirus Genomic Surveillance). CorvGenSurv directly amplified viral RNA from COVID-19 patients’ Nasopharyngeal/Oropharyngeal (NP/OP) swab specimens and sequenced the SARS-CoV-2 whole genome in three segments by long-read, high-throughput sequencing. Sequencing of the whole genome in three segments significantly reduced sequencing data waste, thereby preventing dropouts in genome coverage. We validated the precision of our pipeline by both control genomic RNA sequencing and Sanger sequencing. We produced near full-length whole genome sequences from individuals who were COVID-19 test positive during April to June 2020 in Los Angeles County, California, USA. These sequences were highly diverse in the G clade with nine novel amino acid mutations including NSP12-M755I and ORF8-V117F. With its readily adaptable design, CorvGenSurv grants wide access to genomic surveillance, permitting immediate public health response to sudden threats.


2020 ◽  
Vol 53 (2) ◽  
pp. 15374-15379
Author(s):  
Hu He ◽  
Xiaoyong Zhang ◽  
Fu Jiang ◽  
Chenglong Wang ◽  
Yingze Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document