Boundary Control of Observation and State Feedback for a Class of 1 D Partial Integro-Differential Equations

Author(s):  
Aye Aye Than ◽  
Myo Myo Aye ◽  
Naw Sande Ohn
2017 ◽  
Vol 6 (1) ◽  
pp. 30
Author(s):  
Mohammed Al Masalmeh

This paper investigates and states some properties of conformable fractional derivative, Further Study and applies the series solution for a case of conformable fractional Riccati deferential equation with variable coefficients “which is arising in stochastic games” or “hyperbolic boundary control." Recently, Prof. Roshdi Khalil introduced a new and interesting definition for the C F D, which is simpler than the previous definition in Caputo and Riemann-Liouville. It leads to many extensions of the classical theorems in calculus.


2018 ◽  
Vol 41 (1) ◽  
pp. 246-262 ◽  
Author(s):  
Jianjun Gu ◽  
Chunqiu Wei ◽  
Junmin Wang

Output regulation is considered in this paper for ordinary differential equations cascaded by a wave equation, in which both the body equations and the uncontrolled end are subject to disturbances. The disturbances are generated by an exosystem. A backstepping state-feedback regulator is first designed to force the output to track the reference signal. The design is based on solving cascaded regulator equations, and the solvability condition of the equations is characterized in terms of a transfer function and the eigenvalues of the exosystem. An observer-based output-feedback regulator is then designed to solve the output regulation problem. Finally, the regulator tracking performance is illustrated through numerical simulations.


2016 ◽  
Vol 23 (19) ◽  
pp. 3196-3215 ◽  
Author(s):  
Wei He ◽  
Chuan Yang ◽  
Juxing Zhu ◽  
Jin-Kun Liu ◽  
Xiuyu He

In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler–Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described by three partial differential equations (PDEs) and 12 ordinary differential equations (ODEs). Firstly, model-based boundary control is designed based on a mathematical model of the system. Subsequently, adaptive control is proposed when there are parameter uncertainties in the model. The uniform boundedness and uniform ultimate boundedness are proved under the proposed control laws. Finally, numerical simulations illustrate the effectiveness of the results.


2006 ◽  
Vol 128 (4) ◽  
pp. 946-959 ◽  
Author(s):  
Nhan Nguyen ◽  
Mark Ardema

This paper is concerned with optimal control of a class of distributed-parameter systems governed by first-order, quasilinear hyperbolic partial differential equations that arise in optimal control problems of many physical systems such as fluids dynamics and elastodynamics. The distributed system is controlled via a forced nonlinear periodic boundary condition that describes a boundary control action. Further, the periodic boundary control is subject to a dynamic constraint imposed by a lumped-parameter system governed by ordinary differential equations that model actuator dynamics. The partial differential equations are thus coupled with the ordinary differential equations via the periodic boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to solve a feedback control problem of the Mach number in a wind tunnel.


Sign in / Sign up

Export Citation Format

Share Document