Fall Detection Algorithm of the Elderly Based on BP Neural Network

Author(s):  
Qiushi Xiong ◽  
Danhong Chen ◽  
Ying Zhang ◽  
Zhen Gong
2021 ◽  
Vol 2136 (1) ◽  
pp. 012053
Author(s):  
Zeyu Chen

Abstract With the rapid increase in the number of people living in the elderly population, reducing and dealing with the problem of falls in the elderly has become the focus of research for decades. It is impossible to completely eliminate falls in daily life and activities. Detecting a fall in time can protect the elderly from injury as much as possible. This article uses the Turtlebot robot and the ROS robot operating system, combined with simultaneous positioning and map construction technology, Monte Carlo positioning, A* path planning, dynamic window method, and indoor map navigation. The YOLO network is trained using the stance and fall data sets, and the YOLOv4 target detection algorithm is combined with the robot perception algorithm to finally achieve fall detection on the turtlebot robot, and use the average precision, precision, recall and other indicators to measure.


2014 ◽  
Vol 522-524 ◽  
pp. 1137-1142
Author(s):  
Seong Hyun Kim ◽  
Dong Wook Kim

As the society ages, the number of falls and fractures suffered by the elderly is increasing significantly in numbers. However, studies with reliable statistics and analysis on falls of this specific population were scarce. Fractures due to falls of the elderly are potentially of critical severity, and, therefore, it is important to detect such incidents with accuracy to prevent fractures. This necessitates an effective system to detect falls. For this reason, we induced simulated falls that resemble actual falls as much as possible by using a fall-inducing apparatus, and observed the movement of the body during the falls. The movement of the body was sensed using 3-axes acceleration sensors and bluetooth modules, which would not obstruct the movement as wired sensors or movement analysis systems would do. Using the acceleration data detected by the sensors, a fall detection algorithm was developed to detect a fall and, if any, its direction. Unlike existing studies that used sum-vectors and inclination sensors to detect the direction of falls, which took too much time, the system developed in this study could detect the direction of the fall by comparing only the acceleration data without requiring any other equations, resulting in faster response times.


2013 ◽  
Vol 461 ◽  
pp. 659-666
Author(s):  
Hui Qi Li ◽  
Ding Liang ◽  
Yun Kun Ning ◽  
Qi Zhang ◽  
Guo Ru Zhao

Falls are the second leading cause of unintentional injury deaths worldwide, so how to prevent falls has become a safety and security problem for elderly people. At present, because the sensing modules of most fall alarm devices generally only integrate the single 3-axis accelerometer, so the measured accuracy of sensing signals is limited. It results in that these devices can only achieve the alarm of post-fall detection but not the early pre-impact fall recognition in real fall applications. Therefore, this paper aimed to develop an early pre-impact fall alarm system based on high-precision inertial sensing units. A multi-modality sensing module embedded fall detection algorithm was developed for early pre-impact fall detection. The module included a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer, which could arouse the information of early pre-impact fall warning by a buzzer and a vibrator. Total 81 times fall experiments from 9 healthy subjects were conducted in simulated fall conditions. By combination of the early warning threshold algorithm, the result shows that the detection sensitivity can achieve 98.61% with a specificity of 98.61%, and the average pre-impact lead time is 300ms. In the future, GPS, GSM electronic modules and wearable protected airbag will be embedded in the system, which will enhance the real-time fall protection and timely immediate aid immensely for the elderly people.


Author(s):  
Ping Wang ◽  
Qimeng Li ◽  
Peng Yin ◽  
Zhonghao Wang ◽  
Yu Ling ◽  
...  

AbstractAccording to the World Health Organization and other authorities, falls are one of the main causes of accidental injuries among the elderly population. Therefore, it is essential to detect and predict the fall activities of older persons in indoor environments such as homes, nursing, senior residential centers, and care facilities. Due to non-contact and signal confidentiality characteristics, radar equipment is widely used in indoor care, detection, and rescue. This paper proposes an adaptive channel selection algorithm to separate the activity signals from the background using an ultra-wideband radar and to generalize fused features of frequency- and time-domain images which will be sent to a lightweight convolutional neural network to detect and recognize fall activities. The experimental results show that the method is able to distinguish three types of fall activities (i.e., stand to fall, bow to fall, and squat to fall) and obtain a high recognition accuracy up to 95.7%.


2019 ◽  
Vol 7 (5) ◽  
pp. 01-12
Author(s):  
Biao YE ◽  
Lasheng Yu

The purpose of this article is to analyze the characteristics of human fall behavior to design a fall detection system. The existing fall detection algorithms have problems such as poor adaptability, single function and difficulty in processing large data and strong randomness. Therefore, a long-term and short-term memory recurrent neural network is used to improve the effect of falling behavior detection by exploring the internal correlation between sensor data. Firstly, the serialization representation method of sensor data, training data and detection input data is designed. The BiLSTM network has the characteristics of strong ability to sequence modeling and it is used to reduce the dimension of the data required by the fall detection model. then, the BiLSTM training algorithm for fall detection and the BiLSTM-based fall detection algorithm convert the fall detection into the classification problem of the input sequence; finally, the BiLSTM-based fall detection system was implemented on the TensorFlow platform. The detection and analysis of system were carried out using a bionic experiment data set which mimics a fall. The experimental results verify that the system can effectively improve the accuracy of fall detection to 90.47%. At the same time, it can effectively detect the behavior of Near-falling, and help to take corresponding protective measures.


Sign in / Sign up

Export Citation Format

Share Document