Wavelet analysis of surface current vector fields measured by high frequency Doppler radar

Author(s):  
B.K. Haus ◽  
H.C. Graber ◽  
L.K. Shay
Nature ◽  
1985 ◽  
Vol 316 (6030) ◽  
pp. 712-714 ◽  
Author(s):  
S. Fukao ◽  
K. Wakasugi ◽  
T. Sato ◽  
S. Morimoto ◽  
T. Tsuda ◽  
...  

2010 ◽  
Vol 44 (6) ◽  
pp. 122-132 ◽  
Author(s):  
Jack Harlan ◽  
Eric Terrill ◽  
Lisa Hazard ◽  
Carolyn Keen ◽  
Donald Barrick ◽  
...  

AbstractA national high-frequency radar network has been created over the past 20 years or so that provides hourly 2-D ocean surface current velocity fields in near real time from a few kilometers offshore out to approximately 200 km. This preoperational network is made up of more than 100 radars from 30 different institutions. The Integrated Ocean Observing System efforts have supported the standards-based ingest and delivery of these velocity fields to a number of applications such as coastal search and rescue, oil spill response, water quality monitoring, and safe and efficient marine navigation. Thus, regardless of the operating institution or location of the radar systems, emergency response managers, and other users, can rely on a common source and means of obtaining and using the data. Details of the history, the physics, and the application of high-frequency radar are discussed with successes of the integrated network highlighted.


Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 921-935 ◽  
Author(s):  
P. Lorente ◽  
S. Piedracoba ◽  
J. Soto-Navarro ◽  
E. Alvarez-Fanjul

Abstract. The Ebro River delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three-site standard-range (13.5 MHz) CODAR SeaSonde high-frequency (HF) radar was deployed in December 2013. The main goal of this work is to explore basic features of the sea surface circulation in the Ebro deltaic region as derived from reliable HF radar surface current measurements. For this aim, a combined quality control methodology was applied: firstly, 1-year long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters was conducted to infer both radar site status and HF radar system performance. The signal-to-noise ratio at the monopole exhibited a consistent monthly evolution, although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be sporadic episodes since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May–October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and root mean square error (RMSE) values emerged in the ranges [0.58–0.83] and [4.02–18.31] cm s−1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely, the predominant southwestward flow, the coastal clockwise eddy confined south of the Ebro delta mouth, or the Ebro River impulsive-type freshwater discharge. The EOF analysis related the flow response to local wind forcing and confirmed that the surface current field evolved in space and time according to three significantly dominant modes of variability.


2020 ◽  
Vol 12 (17) ◽  
pp. 2841
Author(s):  
Lei Ren ◽  
Nanyang Chu ◽  
Zhan Hu ◽  
Michael Hartnett

Numerical models and remote sensing observation systems such as radars are useful for providing information on surface flows for coastal areas. Evaluation of their performance and extracting synoptic characteristics are challenging and important tasks. This research aims to investigate synoptic characteristics of surface flow fields through undertaking a detailed analysis of model results and high frequency radar (HFR) data using self-organizing map (SOM) and empirical orthogonal function (EOF) analysis. A dataset of surface flow fields over thirteen days from these two sources was used. A SOM topology map of size 4 × 3 was developed to explore spatial patterns of surface flows. Additionally, comparisons of surface flow patterns between SOM and EOF analysis were carried out. Results illustrate that both SOM and EOF analysis methods are valuable tools for extracting characteristic surface current patterns. Comparisons indicated that the SOM technique displays synoptic characteristics of surface flow fields in a more detailed way than EOF analysis. Extracted synoptic surface current patterns are useful in a variety of applications, such as oil spill treatment and search and rescue. This research provides an approach to using powerful tools to diagnose ocean processes from different aspects. Moreover, it is of great significance to assess SOM as a potential forecasting tool for coastal surface currents.


2013 ◽  
Vol 30 (12) ◽  
pp. 2907-2925 ◽  
Author(s):  
Alejandro Cifuentes-Lorenzen ◽  
James B. Edson ◽  
Christopher J. Zappa ◽  
Ludovic Bariteau

Abstract Obtaining accurate measurements of wave statistics from research vessels remains a challenge due to the platform motion. One principal correction is the removal of ship heave and Doppler effects from point measurements. Here, open-ocean wave measurements were collected using a laser altimeter, a Doppler radar microwave sensor, a radar-based system, and inertial measurement units. Multiple instruments were deployed to capture the low- and high-frequency sea surface displacements. Doppler and motion correction algorithms were applied to obtain a full 1D (0.035–1.3 ± 0.2 Hz) wave spectrum. The radar-based system combined with the laser altimeter provided the optimal low- and high-frequency combination, producing a frequency spectrum in the range from 0.035 to 1.2 Hz for cruising speeds ≤3 m s−1 with a spectral rolloff of f−4 Hz and noise floor of −20/−30 dB. While on station, the significant wave height estimates were comparable within 10%–15% among instrumentation. Discrepancies in the total energy and in the spectral shape between instruments arise when the ship is in motion. These differences can be quantified using the spectral behavior of the measurements, accounting for aliasing and Doppler corrections. The inertial sensors provided information on the amplitude of the ship’s modulation transfer function, which was estimated to be ~1.3 ± 0.2 while on station and increased while underway [2.1 at ship-over-ground (SOG) speed; 4.3 m s−1]. The correction scheme presented here is adequate for measurements collected at cruising speeds of 3 m s−1 or less. At speeds greater than 5 m s−1, the motion and Doppler corrections are not sufficient to correct the observed spectral degradation.


Sign in / Sign up

Export Citation Format

Share Document