ebro river
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 28)

H-INDEX

48
(FIVE YEARS 4)

2022 ◽  
pp. 1-47

Abstract This study analyzes the atmospheric variability that caused the largest floods affecting the town of Tortosa in the mouth of the Ebro River (northeast Iberian Peninsula). The Tortosa flood database and flood marks in the nearby town of Xerta are used to define the more relevant flooding episodes (discharges > 2900 m3s−1) of the 1600-2005 period. We explore the atmospheric variability based on low-frequency patterns and synoptic types applying a multivariable analysis to grids at sea-level pressure and geopotential at 500 hPa provided by the 20th Century V3 Reanalysis Project for the instrumental period (since 1836). Output from the Last Millennium Ensemble Project was used to analyze the sea-level pressure over the pre-instrumental period (before 1836). Our analysis includes 33 flood episodes. Four synoptic types are related to floods in Tortosa since 1836, characterized by low-pressure systems that interact with the Mediterranean warm air-mass and promote the atmosphere destabilization. Flooding in Tortosa is related to relative high values of solar activity, positive Northern Hemisphere temperature anomalies and NAO in positive phase. This indicates that the major floods are related to zonal atmospheric circulations (west to east cyclone transfer). During winter, the main impact of the floods is located at the western part of the basin, while the Pyrenean sub-basins are affected during autumn. The major finding is that similar flood behavior is detected since 1600, improving our understanding of past climates, enhancing the knowledge base for some aspects and impacts of climate change and reducing uncertainty about future outcomes.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3160
Author(s):  
Isabel Echeverribar ◽  
Pablo Vallés ◽  
Juan Mairal ◽  
Pilar García-Navarro

The vast majority of reservoirs, although built for irrigation and water supply purposes, are also used as regulation tools during floods in river basins. Thus, the selection of the most suitable model when facing the simulation of a flood wave in a combination of river reach and reservoir is not direct and frequently some analysis of the proper system of equations and the number of solved flow velocity components is needed. In this work, a stretch of the Ebro River (Spain), which is the biggest river in Spain, is simulated solving the Shallow Water Equations (SWE). The simulation model covers the area of river between the city of Zaragoza and the Mequinenza dam. The domain encompasses 721.92 km2 with 221 km of river bed, of which the last 75 km belong to the Mequinenza reservoir. The results obtained from a one-dimensional (1D) model are validated comparing with those provided by a two-dimensional (2D) model based on the same numerical scheme and with measurements. The 1D modelling loses the detail of the floodplain, but nevertheless the computational consumption is much lower compared to the 2D model with a permissible loss of accuracy. Additionally, the particular nature of this reservoir might turn the 1D model into a more suitable option. An alternative technique is applied in order to model the reservoir globally by means of a volume balance (0D) model, coupled to the 1D model of the river (1D-0D model). The results obtained are similar to those provided by the full 1D model with an improvement on computational time. Finally, an automatic regulation is implemented by means of a Proportional-Integral-Derivative (PID) algorithm and tested in both the full 1D model and the 1D-0D model. The results show that the coupled model behaves correctly even when controlled by the automatic algorithm.


Quaternary ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 25
Author(s):  
Josep M. Parés ◽  
Mathieu Duval ◽  
Angel Soria-Jáuregui ◽  
María José González-Amuchástegui

The Cenozoic sedimentary basins in the Iberian Peninsula show a change from long-term basin infill to incision, a transition that indicates a period of major drainage reorganization that culminated in the throughflow of the networks to the Atlantic and Mediterranean oceans. Both the cause of the transition from aggradation to degradation and the linkages to tectonic, climatic, and geomorphic events hinge on the chronology of the fluvial network incision and excavation of the basin’s sedimentary fills. In this paper, we describe the first chronologic data on the highest fluvial terraces of the upper area of the Ebro River, one of the largest fluvial systems in the Iberian Peninsula, to determine the onset of incision and excavation in the basin. For this purpose, we combine electron spin resonance (ESR) and paleomagnetism methods to date strath terraces found at 140, 90, and 85 m above the current river level. Our results show ages of ca. 1.2 and 1.5 Ma for the uppermost river terraces in the upper Ebro catchment, constraining the minimum age of the entrenchment of the upper Ebro River.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1492
Author(s):  
Jaume Pellicer ◽  
Jordi López-Pujol ◽  
Marc Aixarch ◽  
Teresa Garnatje ◽  
Joan Vallès ◽  
...  

Based on results from previous studies, populations of the Iberian endemic Centaurea podospermifolia north of the Ebro River are considered genetically pure, while those southward are introgressed, with genetic input from C. cephalariifolia. This phenomenon is particularly relevant, especially given both the endangered and protected status for the species, which can have consequences in how to best apply conservation strategies to maintain genetic resources in the species. The main goal of this study was to evaluate whether genome size assessments using flow cytometry can help distinguishing between pure, hybrid and introgressed populations, and hence become a powerful and cost-effective tool to complement comprehensive population genetic surveys. The results indicate that there are significant genome size differences between populations of C. podospermifolia, which are coincident with previous considerations of pure and introgressed populations. Given the simplicity and reproducibility of this technique, flow cytometry could become an effective tool for monitoring pure populations of this species and, indeed, become an integral part of the management plans that are mandatory for listed taxa.


2021 ◽  
pp. 120324
Author(s):  
Philippe Négrel ◽  
Emmanuelle Petelet-Giraud ◽  
Catherine Guerrot ◽  
Romain Millot

2021 ◽  
Vol 91 (3) ◽  
pp. 243-261
Author(s):  
JUAN PEDRO RODRÍGUEZ-LÓPEZ ◽  
ANA R. SORIA ◽  
CARLOS L. LIESA

Abstract Coal clasts associated with extreme floods are prone to survive and maintain their large size, contrary to the general belief that distance from the parent peat layer reduces the size of transported clasts. Contrary to apparent logic, moreover, a second flood event favors the preservation potential of such soft organic clasts, this being the minimal fragmentation. An Anthropocene example from an urban park in Spain demonstrates that peat clasts up to 1 m long can survive due to flotation for a distance of almost a hundred meters and are well preserved and stabilized thanks to a second flood. These peat blocks were generated by catastrophic flooding of urban peatlands along the Ebro River (city of Zaragoza) during exceptional rainfalls in Iberia. The water flow from the Ebro River flooded the peatland at the surface of the meander, ripping up peat clasts from a shear or detachment level formed by an indurated level characterized by rounded quartzite pebbles, which acted as a hydrological discontinuity surface. Extensive evidence of the paleoflow direction is provided by oriented crushed reeds and the widespread occurrence of imbricated and thrusted peat blocks on the eroded and exposed peatland and in the main urban accumulation areas. To be specific, peat blocks and minor clasts accumulated in four areas associated with different modes of transport and topographic steps. From proximal to distal these are as follows: i) a proximal rim including thrusted peat blocks on the eroded peatland, ii) two intermediate accumulation zones associated with topographic steps in the park, characterized by peat-clast imbrication, iii) gravity-fall peat clasts deposited in an artificial channel in the park, and iv) peat rafts of more than 1 m in diameter scattered over the surface of the park (at a distance of 90 m from the eroded peatland).


Sign in / Sign up

Export Citation Format

Share Document