scholarly journals Evaluating the surface circulation in the Ebro delta (northeastern Spain) with quality-controlled high-frequency radar measurements

Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 921-935 ◽  
Author(s):  
P. Lorente ◽  
S. Piedracoba ◽  
J. Soto-Navarro ◽  
E. Alvarez-Fanjul

Abstract. The Ebro River delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three-site standard-range (13.5 MHz) CODAR SeaSonde high-frequency (HF) radar was deployed in December 2013. The main goal of this work is to explore basic features of the sea surface circulation in the Ebro deltaic region as derived from reliable HF radar surface current measurements. For this aim, a combined quality control methodology was applied: firstly, 1-year long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters was conducted to infer both radar site status and HF radar system performance. The signal-to-noise ratio at the monopole exhibited a consistent monthly evolution, although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be sporadic episodes since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May–October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and root mean square error (RMSE) values emerged in the ranges [0.58–0.83] and [4.02–18.31] cm s−1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely, the predominant southwestward flow, the coastal clockwise eddy confined south of the Ebro delta mouth, or the Ebro River impulsive-type freshwater discharge. The EOF analysis related the flow response to local wind forcing and confirmed that the surface current field evolved in space and time according to three significantly dominant modes of variability.

2015 ◽  
Vol 12 (4) ◽  
pp. 1913-1952 ◽  
Author(s):  
P. Lorente ◽  
S. Piedracoba ◽  
J. Soto-Navarro ◽  
E. Alvarez-Fanjul

Abstract. Ebro River Delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three site standard-range (13.5 MHz) CODAR SeaSonde High Frequency (HF) radar was deployed in 2013. Since there is a growing demand for reliable HF radar surface current measurements, the main goal of this work is to present a combined quality control methodology. Firstly, one year-long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters is conducted in order to infer both radar site status and HF radar system performance. Signal-to-noise ratio at the monopole exhibited a consistent monthly evolution although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be a sporadic episode since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May–October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and RMSE values emerged in the ranges 0.58–0.83 and 4.02–18.31 cm s−1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely: the predominant southwestward flow, the coastal clockwise eddy confined south of Ebro Delta mouth or the Ebro River impulsive-type freshwater discharge. Future works should include the use of verified HF radar data for the rigorous skill assessment of operational ocean circulation systems currently running in Ebro estuarine region like MyOcean IBI.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1589 ◽  
Author(s):  
Reyes Suarez ◽  
Cook ◽  
Gačić ◽  
Paduan ◽  
Drago ◽  
...  

The Malta-Sicily Channel is part of the Sicily Channel system where water and thermohaline properties between the Eastern and Western Mediterranean basins take place. Several mesoscales features are detached from the main circulation due to wind and bathymetric forcing. In this paper, surface circulation structures are studied using different remotely sensed datasets: satellite data (absolute dynamic topography, Cross-Calibrated Multi-Platform wind vector analysis, satellite chlorophyll and sea surface temperature) and high frequency radar data. We identified high frequency motions (at short time scales—hours to days), as well as mesoscale structures fundamental for the understanding of the Malta-Sicily Channel circulation dynamics. One of those is the Malta-Sicily Gyre; an anticyclonic structure trapped between the Sicilian and Maltese coasts, which is poorly studied in the literature and often confused with the Malta Channel Crest and the Ionian Shelf Break Vortex. In order to characterize this gyre, we calculated its kinetic properties taking advantage of the fine-scale temporal and spatial resolution of the high frequency radar data, and thus confirming its presence with an updated version of the surface circulation patterns in the area.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Adam Gauci ◽  
Aldo Drago ◽  
John Abela

High frequency (HF) radar installations are becoming essential components of operational real-time marine monitoring systems. The underlying technology is being further enhanced to fully exploit the potential of mapping sea surface currents and wave fields over wide areas with high spatial and temporal resolution, even in adverse meteo-marine conditions. Data applications are opening to many different sectors, reaching out beyond research and monitoring, targeting downstream services in support to key national and regional stakeholders. In the CALYPSO project, the HF radar system composed of CODAR SeaSonde stations installed in the Malta Channel is specifically serving to assist in the response against marine oil spills and to support search and rescue at sea. One key drawback concerns the sporadic inconsistency in the spatial coverage of radar data which is dictated by the sea state as well as by interference from unknown sources that may be competing with transmissions in the same frequency band. This work investigates the use of Machine Learning techniques to fill in missing data in a high resolution grid. Past radar data and wind vectors obtained from satellites are used to predict missing information and provide a more consistent dataset.


Author(s):  
Anna Rubio ◽  
Lohitzune Solabarrieta ◽  
Manuel Gonzalez ◽  
Julien Mader ◽  
Sonia Castanedo ◽  
...  

2013 ◽  
Vol 54 (62) ◽  
pp. 59-64 ◽  
Author(s):  
K. Shirasawa ◽  
N. Ebuchi ◽  
M. Leppäranta ◽  
T. Takatsuka

AbstractA C-band sea-ice radar (SIR) network system was operated to monitor the sea-ice conditions off the Okhotsk Sea coast of northern Hokkaido, Japan, from 1969 to 2004. The system was based on three radar stations, which were capable of continuously monitoring the sea surface as far as 60 km offshore along a 250 km long coastal section. In 2004 the SIR system was closed down and a sea surface monitoring programme was commenced using high-frequency (HF) radar; this system provides information on surface currents in open-water conditions, while areas with ‘no signal’ can be identified as sea ice. The present study compares HF radar data with SIR data to evaluate their feasibility for sea-ice remote sensing. The period of overlapping data was 1.5 months. The results show that HF radar information can be utilized for ice-edge mapping although it cannot fully compensate for the loss of the SIR system. In particular, HF radar does not provide ice concentration, ice roughness and geometrical structures or ice kinematics. The probability of ice-edge detection by HF radar was 0.9 and the correlation of the ice-edge distance between the radars was 0.7.


Author(s):  
Haruka Nakano ◽  
Mai Matsusaka ◽  
Issei Nishimura ◽  
Hiroyuki Yoritaka ◽  
Masao Nemoto ◽  
...  

Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 399-410 ◽  
Author(s):  
A. Fontán ◽  
G. Esnaola ◽  
J. Sáenz ◽  
M. González

Abstract. Two high-frequency (HF) radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air–sea interaction patterns and timescales for the period 2009–2010. The analysis was conducted using the Barnett–Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind–current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind–current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.


2010 ◽  
Vol 27 (5) ◽  
pp. 908-919 ◽  
Author(s):  
Simone Cosoli ◽  
Andrea Mazzoldi ◽  
Miroslav Gačić

Abstract The performances of a shore-based high-frequency (HF) radar network deployed along the coast of the Venice lagoon (northern Adriatic Sea) are discussed based on a comparison with a single bottom-mounted ADCP deployed in the shallow-water area offshore of the lagoon for a 40-day period in August–September 2005. The analyses, carried out using currents representative of the first meter for the HF radars and 2.5 m for the ADCP, gave rms differences of radial currents in the range of 8.7–14.7 cm s−1 (correlation 0.37– 0.82) for the ideal pattern and 8.4–20.5 cm s−1 (correlation 0.14–0.84) for the measured pattern. Good correlation was found between surface current vectors and moored data (scalar correlation up to R = 0.83, vector correlation ρ = 0.78, veering angle 6°). Comparison metrics were improved for the low-passed currents. Angular offsets ranged between +6° and +11°. Differences depended primarily on the geophysical variability within the water column. Bearing offsets also contributed because they lead to comparisons with radial velocities at erroneous angular sectors. Radar performances were severely affected by strong northeasterly wind pulses in their early stages. An increased broadband noise, spread over the entire Doppler spectrum across all ranges to the antennas, masked the Bragg peaks and determined the loss in radar coverage, introducing gross underestimations of both radial velocities and total currents.


2021 ◽  
Author(s):  
Jaime Hernandez-Lasheras ◽  
Baptiste Mourre ◽  
Alejandro Orfila ◽  
Alex Santana ◽  
Emma Reyes ◽  
...  

Abstract. The impact of the assimilation of HFR (High-Frequency Radar) observations in a high-resolution regional model is evaluated, focusing on the improvement of the mesoscale dynamics. The study area is the Ibiza Channel, located in the Western Mediterranean Sea. The resulting fields are tested against trajectories from 13 drifters. Six different assimilation experiments are compared to a control run (no assimilation). The experiments consists in assimilating (i) Sea surface temperature, sea level anomaly and Argo profiles (generic observation dataset); the generic observation dataset plus (ii) HFR total velocities and (iii) HFR radial velocities. Moreover, for each dataset two different initialization methods are assessed: a) restarting directly from the analysis after the assimilation or b) using an intermediate initialization step applying a strong nudging towards the analysis fields. The experiments assimilating generic observations plus HFR total velocities with the direct restart provides the best results, improving by 53 % the average separation distance between drifters and virtual particles after the first 48 hours of simulation in comparison to the control run. When using the nudging initialization step, the best results are found when assimilating HFR radial velocities, with a reduction of the mean separation distance by around 48 %. Results show the capability of the Ensemble Optimal Interpolation data-assimilative system to correct surface currents not only inside but also beyond the HFR coverage area. The assimilation of radial observations benefits from the smoothing effect associated with the application of the intermediate nudging step.


2014 ◽  
Vol 31 (7) ◽  
pp. 1564-1582 ◽  
Author(s):  
Brian M. Emery ◽  
Libe Washburn ◽  
Chad Whelan ◽  
Don Barrick ◽  
Jack Harlan

Abstract HF radars measure ocean surface currents near coastlines with a spatial and temporal resolution that remains unmatched by other approaches. Most HF radars employ direction-finding techniques, which obtain the most accurate ocean surface current data when using measured, rather than idealized, antenna patterns. Simplifying and automating the antenna pattern measurement (APM) process would improve the utility of HF radar data, since idealized patterns are widely used. A method is presented for obtaining antenna pattern measurements for direction-finding HF radars from ships of opportunity. Positions obtained from the Automatic Identification System (AIS) are used to identify signals backscattered from ships in ocean current radar data. These signals and ship position data are then combined to determine the HF radar APM. Data screening methods are developed and shown to produce APMs with low error when compared with APMs obtained with shipboard transponder-based approaches. The analysis indicates that APMs can be reproduced when the signal-to-noise ratio (SNR) of the backscattered signal is greater than 11 dB. Large angular sectors of the APM can be obtained on time scales of days, with as few as 50 ships.


Sign in / Sign up

Export Citation Format

Share Document