scholarly journals A Multisensor Comparison of Ocean Wave Frequency Spectra from a Research Vessel during the Southern Ocean Gas Exchange Experiment

2013 ◽  
Vol 30 (12) ◽  
pp. 2907-2925 ◽  
Author(s):  
Alejandro Cifuentes-Lorenzen ◽  
James B. Edson ◽  
Christopher J. Zappa ◽  
Ludovic Bariteau

Abstract Obtaining accurate measurements of wave statistics from research vessels remains a challenge due to the platform motion. One principal correction is the removal of ship heave and Doppler effects from point measurements. Here, open-ocean wave measurements were collected using a laser altimeter, a Doppler radar microwave sensor, a radar-based system, and inertial measurement units. Multiple instruments were deployed to capture the low- and high-frequency sea surface displacements. Doppler and motion correction algorithms were applied to obtain a full 1D (0.035–1.3 ± 0.2 Hz) wave spectrum. The radar-based system combined with the laser altimeter provided the optimal low- and high-frequency combination, producing a frequency spectrum in the range from 0.035 to 1.2 Hz for cruising speeds ≤3 m s−1 with a spectral rolloff of f−4 Hz and noise floor of −20/−30 dB. While on station, the significant wave height estimates were comparable within 10%–15% among instrumentation. Discrepancies in the total energy and in the spectral shape between instruments arise when the ship is in motion. These differences can be quantified using the spectral behavior of the measurements, accounting for aliasing and Doppler corrections. The inertial sensors provided information on the amplitude of the ship’s modulation transfer function, which was estimated to be ~1.3 ± 0.2 while on station and increased while underway [2.1 at ship-over-ground (SOG) speed; 4.3 m s−1]. The correction scheme presented here is adequate for measurements collected at cruising speeds of 3 m s−1 or less. At speeds greater than 5 m s−1, the motion and Doppler corrections are not sufficient to correct the observed spectral degradation.

2022 ◽  
Vol 15 (1) ◽  
pp. 1-9
Author(s):  
Haoyu Jiang

Abstract. High-frequency parts of ocean wave spectra are strongly coupled to the local wind. Measurements of ocean wave spectra can be used to estimate sea surface winds. In this study, two deep neural networks (DNNs) were used to estimate the wind speed and direction from the first five Fourier coefficients from buoys. The DNNs were trained by wind and wave measurements from more than 100 meteorological buoys during 2014–2018. It is found that the wave measurements can best represent the wind information about 40 min previously because the high-frequency portion of the wave spectrum integrates preceding wind conditions. The overall root-mean-square error (RMSE) of estimated wind speed is ∼1.1 m s−1, and the RMSE of the wind direction is ∼ 14∘ when wind speed is 7–25 m s−1. This model can be used not only for the wind estimation for compact wave buoys but also for the quality control of wind and wave measurements from meteorological buoys.


2021 ◽  
Author(s):  
Haoyu Jiang

Abstract. High-frequency parts of ocean wave spectra are strongly coupled to the local wind. Measurements of ocean wave spectra can be used to estimate sea surface winds. In this study, two deep neural networks (DNNs) were used to estimate the wind speed and direction from the first five Fourier coefficients from buoys. The DNNs were trained by wind and wave measurements from more than 100 meteorological buoys during 2014–2018. It is found that the wave measurements can best represent the wind information ~1 h ago, because the wave spectra contain wind information a short period before. The overall root-mean-square error (RMSE) of estimated wind speed is ~1.1 m/s, and the RMSE of wind direction is ~14° when wind speed is 7~25 m/s. This model can not only be used for the wind estimation for compact wave buoys but also for the quality control of wind and wave measurements from meteorological buoys.


1982 ◽  
Vol 35 (3) ◽  
pp. 397-410 ◽  
Author(s):  
E. D. R. Shearman ◽  
L. R. Wyatt

Radar operating in the dekametric or high frequency band permits the measurement of sea-surface parameters at very much longer ranges than is possible with other techniques: 0–200 km is practical using a coast-located radar and oversea propagation, while 1000–3000 km is achievable using ionospheric reflection from a radar which may be located inland. The paper, which was presented at Oceanology International 1982 at Brighton, discusses the extraction and mapping of wave height, wave period, non-directional spectrum and surface wind parameters from Doppler radar echoes. The techniques are illustrated by the results of the UK ground-wave and sky-wave measurements and computer simulation.


2017 ◽  
Vol 34 (9) ◽  
pp. 2113-2126 ◽  
Author(s):  
Björn Lund ◽  
Christopher J. Zappa ◽  
Hans C. Graber ◽  
Alejandro Cifuentes-Lorenzen

AbstractSurface wave measurements from ships pose difficulties because of motion contamination. Cifuentes-Lorenzen et al. analyzed laser altimeter and marine X-band radar (MR) wave measurements from the Southern Ocean Gas Exchange Experiment (SOGasEx). They found that wave measurements from both sensors deteriorate precipitously at ship speeds 3 m s−1. This study demonstrates that MR can yield accurate wave frequency–direction spectra independent of ship motion. It is based on the same shipborne SOGasEx wave data but uses the MR wave retrieval method proposed by Lund et al. and a novel empirical transfer function (ETF). The ETF eliminates biases in the MR wave spectra by redistributing energy from low to high frequencies. The resulting MR wave frequency–direction spectra are shown to agree well with laser altimeter wave frequency spectra from times when the ship was near stationary and with WAVEWATCH III (WW3) model wave parameters over the full study period.


2021 ◽  
Author(s):  
Robert Edward Jensen ◽  
Val Swail ◽  
Richard Harry Bouchard

AbstractAn intra-measurement evaluation was undertaken, deploying a NOMAD buoy equipped with three National Data Buoy Center and two Environment and Climate Change Canada-AXYS sensor/payload packages off Monterey, California; a Datawell Directional Waverider buoy was deployed within 19 km of the NOMAD site. The six independent wave measurement systems reported hourly estimates of the frequency spectra, and when applicable, the four Fourier directional components. The integral wave parameters showed general agreement among the five sensors compared to the neighboring Datawell Directional Waverider, with the Inclinometer and the Watchman performing similarly to the more sophisticated 3DMG, HIPPY, and Triaxys sensor packages. As the Hm0 increased, all but the Inclinometer were biased low; however, even the Watchman reported reasonable wave measurements up to about 6–7 m, after which the Hm0 becomes negatively biased up to about a meter, comparable to previous studies. The parabolic fit peak spectral wave period, Tpp, results showed a large scatter, resulting from the complex nature of multiple swell wave systems compounded by local wind-sea development, exacerbated by a variable that can be considered as temporally unstable. The three directional sensors demonstrated that NOMAD buoys are capable of measuring directional wave properties along the western US coast, with biases of about 6 to 9 deg, and rms errors of approximately 30 deg. Frequency spectral evaluations found similarities in the shape, but a significant under estimation in the high frequency range. The results from slope analyses also revealed a positive bias in the rear face of the spectra, and a lack of invariance in frequency as suggested by theory.


Nature ◽  
1985 ◽  
Vol 316 (6030) ◽  
pp. 712-714 ◽  
Author(s):  
S. Fukao ◽  
K. Wakasugi ◽  
T. Sato ◽  
S. Morimoto ◽  
T. Tsuda ◽  
...  

2021 ◽  
Author(s):  
Anne Karin Magnusson ◽  
Robert Jensen ◽  
Val Swail

AbstractThe quality of wave measurements is of primary importance for the validation of wave forecasting models, satellite wave calibration and validation, wave physics, offshore operations and design and climate monitoring. Validation of global wave forecasts revealed significant regional differences, which were linked to the different wave buoy systems used by different countries. To fully understand the differences between the wave measurement systems, it is necessary to go beyond investigations of the integral wave parameters height, period and direction, into the frequency spectra and the four directional Fourier parameters that are used to estimate the directional distribution. We here analyse wave data measured from three different sensors (non-directional Datawell Waverider buoy, WaveRadar Rex, Optech laser) operating at the Ekofisk oil production platform located in the central North Sea over a period of several months, with significant wave height ranging from 1 to 10 m. In general, all three sensors provide similar measurements of the integral wave properties and frequency spectra, although there are some significant differences which could impact design and operations, forecast verification and climate monitoring. For example, the radar underestimates energy in frequency bands higher than 8 s by 3–5%, swell (12.5–16 s) by 5–13%, while the laser has 1–2% more energy than the Waverider in the most energetic bands. Lee effects of structures are also estimated. Lower energy at the frequency tail with the radar has an effect on wave periods (they are higher); wave steepness is seen to be reduced by 10% in the wind seas. Goda peakedness and the unidirectional Benjamin-Feir index are also examined for the three sensors.


Sign in / Sign up

Export Citation Format

Share Document