Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory

Author(s):  
M. Rodelo ◽  
J.L. Villa ◽  
J. Duque ◽  
E. Yime
2013 ◽  
Vol 655-657 ◽  
pp. 1114-1118
Author(s):  
Hui Zhou ◽  
Yi Cao ◽  
Jing Hu Yu ◽  
Gui Lan Chen ◽  
Qiang Wang ◽  
...  

This paper mainly addressed the workspace analysis and performance evaluation of a special class of the 6/6 cable-suspended parallel robot. Based on the screw theory and the static equilibrium, the Jacobian matrix of the cable -suspended parallel robot is constructed. The workspace volume is characterized as the set of points where the centroid of the moving platform can reach with tensions in all suspension cables for a constant orientation. This paper attempts to tackle some aspects of optimal design of this special class of the 6/6 cable-suspended parallel robot by addressing the variations of the workspace volume and the accuracy of the robot using different geometric configurations, different ratios and orientations of the moving platform. The global condition index is used as a performance index of a robot with respect to the force and velocity transmission over the whole workspace.


2011 ◽  
Vol 474-476 ◽  
pp. 840-845
Author(s):  
Da Chang Zhu ◽  
Fan Xiao ◽  
Liang Wang ◽  
Qi Hua Gu

Based on the screw theory,the paper presents a systematic method for structural synthesis of the two rotations and one translation parallel robot.According to the reciprocal product between kinetic screw and constrainted screw in screw theory.This method firstly creats possible branch structures and then generates diferent models of mechanism.By this method,the paper carries on the structural synthesis of the two rotations and one translation parallel robot,and also lists some of the mechanisms including a few new ones. Analyzsis solution of direct and inverse position.The dynamic simulation was conducted using the software of Adams.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Hamed Khakpour ◽  
Lionel Birglen ◽  
Souheil-Antoine Tahan

In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators.


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


Sign in / Sign up

Export Citation Format

Share Document