A Multiplicative Coordinated Stealthy Attack and its Detection for Cyber Physical Systems

Author(s):  
Gyujin Na ◽  
Yongsoon Eun
Author(s):  
Amin Ghafouri ◽  
Yevgeniy Vorobeychik ◽  
Xenofon Koutsoukos

Attacks in cyber-physical systems (CPS) which manipulate sensor readings can cause enormous physical damage if undetected. Detection of attacks on sensors is crucial to mitigate this issue. We study supervised regression as a means to detect anomalous sensor readings, where each sensor's measurement is predicted as a function of other sensors. We show that several common learning approaches in this context are still vulnerable to stealthy attacks, which carefully modify readings of compromised sensors to cause desired damage while remaining undetected. Next, we model the interaction between the CPS defender and attacker as a Stackelberg game in which the defender chooses detection thresholds, while the attacker deploys a stealthy attack in response. We present a heuristic algorithm for finding an approximately optimal threshold for the defender in this game, and show that it increases system resilience to attacks without significantly increasing the false alarm rate.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Gyujin Na ◽  
Hanbit Lee ◽  
Yongsoon Eun

Stealthy attacks to cyber-physical systems (CPS) refer to the ones that avoid attack detection mechanisms augmented to the systems typically in the form of anomaly detectors. Various types of stealthy attacks have been reported in the literature. Among the attacks with stealthy property, a recently reported multiplicative coordinated attack is particularly dangerous in that it corrupts sensor and actuator data in a coordinated manner, and it does not require precise system knowledge in order to be stealthy. It must be noted that most of these attacks are applicable to CPS, the physical counterparts of which are of linear dynamics. This could be a limitation since most of the physical dynamic systems that are encountered from CPS perspective are of nonlinear nature. In this work, we present a version of multiplicative coordinated stealthy attack for a class of CPS, the physical counterpart of which possesses nonlinear dynamics. Specifically, for the physical systems with homogeneous property, the attack is constructed and the effect is analyzed. Various simulations are carried out to illustrate the effect of the attack.


2021 ◽  
Vol 358 (1) ◽  
pp. 151-171 ◽  
Author(s):  
Weiwei Tu ◽  
Jiuxiang Dong ◽  
Ding Zhai

Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Sign in / Sign up

Export Citation Format

Share Document