Lasalle's invariant principle via vector Lyapunov functions of a class of discontinuous systems

Author(s):  
Gui-fang Cheng ◽  
Xiao-wu Mu
2007 ◽  
Vol 28 (12) ◽  
pp. 1613-1619 ◽  
Author(s):  
Xiao-wu Mu ◽  
Gui-fang Cheng ◽  
Zhi-shuai Ding

Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter develops vector dissipativity notions for large-scale nonlinear impulsive dynamical systems. In particular, it introduces a generalized definition of dissipativity for large-scale nonlinear impulsive dynamical systems in terms of a hybrid vector dissipation inequality involving a vector hybrid supply rate, a vector storage function, and an essentially nonnegative, semistable dissipation matrix. The chapter also defines generalized notions of a vector available storage and a vector required supply and shows that they are element-by-element ordered, nonnegative, and finite. Extended Kalman-Yakubovich-Popov conditions, in terms of the local impulsive subsystem dynamics and the interconnection constraints, are developed for characterizing vector dissipativeness via vector storage functions for large-scale impulsive dynamical systems. Finally, using the concepts of vector dissipativity and vector storage functions as candidate vector Lyapunov functions, the chapter presents feedback interconnection stability results of large-scale impulsive nonlinear dynamical systems.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, with an emphasis on vector Lyapunov function methods and vector dissipativity theory. It examines large-scale continuous-time interconnected dynamical systems and describes thermodynamic modeling of large-scale interconnected systems, along with the use of vector Lyapunov functions to control large-scale dynamical systems. It also discusses finite-time stabilization of large-scale systems via control vector Lyapunov functions, coordination control for multiagent interconnected systems, large-scale impulsive dynamical systems, finite-time stabilization of large-scale impulsive dynamical systems, and hybrid decentralized maximum entropy control for large-scale systems. This chapter provides a brief introduction to large-scale interconnected dynamical systems as well as an overview of the book's structure.


2000 ◽  
Vol 7 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Josef Kalas

Abstract A general nonuniqueness theorem is given for ordinary differential equations with singularities. The criterion uses vector Lyapunov functions and extends the previously known criteria ones. The applicability is illustrated by several examples.


2015 ◽  
Vol 9 (11) ◽  
pp. 176 ◽  
Author(s):  
Gulzhan Uskenbayeva

<p class="22">We investigate a new approach to the construction of vector Lyapunov functions. An approach to the construction of Lyapunov functions as vector functions is developed based on a geometrical interpretation of the second method of Lyapunov. The negative of the gradient is determined from the components of the time derivative of the state vector (i.e., the right-hand side of the state equation). The region of stability of a closed-loop linear, stationary system with uncertain parameters is governed by inequalities in the matrix elements of the closed-loop system. This study developed a method for analysing the robust stability of SISO and MIMO linear systems in canonical forms.</p>


Sign in / Sign up

Export Citation Format

Share Document