A parabolic operator for parameter optimization problems

Author(s):  
T.J. Stidsen ◽  
O. Caprani ◽  
Z. Michalewicz
2021 ◽  
Author(s):  
Leila Zahedi ◽  
Farid Ghareh Mohammadi ◽  
M. Hadi Amini

Machine learning techniques lend themselves as promising decision-making and analytic tools in a wide range of applications. Different ML algorithms have various hyper-parameters. In order to tailor an ML model towards a specific application, a large number of hyper-parameters should be tuned. Tuning the hyper-parameters directly affects the performance (accuracy and run-time). However, for large-scale search spaces, efficiently exploring the ample number of combinations of hyper-parameters is computationally challenging. Existing automated hyper-parameter tuning techniques suffer from high time complexity. In this paper, we propose HyP-ABC, an automatic innovative hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach, to measure the classification accuracy of three ML algorithms, namely random forest, extreme gradient boosting, and support vector machine. Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned, making it worthwhile for real-world hyper-parameter optimization problems. We further compare our proposed HyP-ABC algorithm with state-of-the-art techniques. In order to ensure the robustness of the proposed method, the algorithm takes a wide range of feasible hyper-parameter values, and is tested using a real-world educational dataset.


1999 ◽  
Vol 7 (1) ◽  
pp. 19-44 ◽  
Author(s):  
Slawomir Koziel ◽  
Zbigniew Michalewicz

During the last five years, several methods have been proposed for handling nonlinear constraints using evolutionary algorithms (EAs) for numerical optimization problems. Recent survey papers classify these methods into four categories: preservation of feasibility, penalty functions, searching for feasibility, and other hybrids. In this paper we investigate a new approach for solving constrained numerical optimization problems which incorporates a homomorphous mapping between n-dimensional cube and a feasible search space. This approach constitutes an example of the fifth decoder-based category of constraint handling techniques. We demonstrate the power of this new approach on several test cases and discuss its further potential.


2002 ◽  
Vol 10 (4) ◽  
pp. 371-395 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Ashish Anand ◽  
Dhiraj Joshi

Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator. Such recombination operators use probability distributions around the parent solutions to create an offspring. Some operators emphasize solutions at the center of mass of parents and some around the parents. In this paper, we propose a generic parent-centric recombination operator (PCX) and a steady-state, elite-preserving, scalable, and computationally fast population-alteration model (we call the G3 model). The performance of the G3 model with the PCX operator is investigated on three commonly used test problems and is compared with a number of evolutionary and classical optimization algorithms including other real-parameter GAs with the unimodal normal distribution crossover (UNDX) and the simplex crossover (SPX) operators, the correlated self-adaptive evolution strategy, the covariance matrix adaptation evolution strategy (CMA-ES), the differential evolution technique, and the quasi-Newton method. The proposed approach is found to consistently and reliably perform better than all other methods used in the study. A scale-up study with problem sizes up to 500 variables shows a polynomial computational complexity of the proposed approach. This extensive study clearly demonstrates the power of the proposed technique in tackling real-parameter optimization problems.


2014 ◽  
Vol 554 ◽  
pp. 526-530 ◽  
Author(s):  
Liyana Ramli ◽  
Yahya M. Sam ◽  
Zaharuddin Mohamed ◽  
Muhamad Khairi Aripin ◽  
Muhamad Fahezal Ismail

Yaw stability control is the most popular topics in the automotive field. Several studies have been done in searching the effective method in controlling yaw moment. Hence, an integration of the active front steering system (AFS) with Composite Nonlinear Feedback controller is presented in this paper. Recently, this controller has been used by a lot of researchers in controlling their system performance due to its main advantage that can be seen in transient response which demonstrate super fast tracking. An optimal CNF feedback control problem is formulated as a parameter optimization problem with performance index and restrictions on stability. To handle such restrictions and constraint, the particle swarm optimization algorithm is applied to solve parameter optimization problems.


2013 ◽  
Vol 13 (4) ◽  
pp. 1902-1921 ◽  
Author(s):  
Pilar Caamaño ◽  
Francisco Bellas ◽  
Jose A. Becerra ◽  
Richard J. Duro

Sign in / Sign up

Export Citation Format

Share Document