Energy management of water transfer stations by using demand response programs

Author(s):  
Yavuz Yalcin ◽  
Kenan Yigit ◽  
Bora Acarkan

Microgrid Energy Management is done to optimize microgrid performance. Power from Wind Turbines (WT) and Photo Voltaic (PV) modules into a microgrid addresses both factors of environmental concerns as well as sustainable energy production. Point of coupling with utility main grid is disconnected when microgrid functions in autonomous mode and it enhances steady microgrid operation when traditional grids face blackouts. Clean and renewable energy sources being easily affected by variation in weather condition, so taking into account of this uncertainty is essential while formulating power flow problem which can be done through demand response programs. This paper aims to investigate results obtained from research of several researchers scrutinizingly and analyzed critically for optimal energy management in microgrids using demand response programs. This paper also highlights the worthy findings of possible areas of research that would enhance the use of demand side management through demand response programs in microgrids.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3299 ◽  
Author(s):  
Mohammad Shakeri ◽  
Jagadeesh Pasupuleti ◽  
Nowshad Amin ◽  
Md. Rokonuzzaman ◽  
Foo Wah Low ◽  
...  

Electricity demand is increasing, as a result of increasing consumers in the electricity market. By growing smart technologies such as smart grid and smart energy management systems, customers were given a chance to actively participate in demand response programs (DRPs), and reduce their electricity bills as a result. This study overviews the DRPs and their practices, along with home energy management systems (HEMS) and load management techniques. The paper provides brief literature on HEMS technologies and challenges. The paper is organized in a way to provide some technical information about DRPs and HEMS to help the reader understand different concepts about the smart grid, and be able to compare the essential concerns about the smart grid. The article includes a brief discussion about DRPs and their importance for the future of energy management systems. It is followed by brief literature about smart grids and HEMS, and a home energy management system strategy is also discussed in detail. The literature shows that storage devices have a huge impact on the efficiency and performance of energy management system strategies.


2012 ◽  
Vol 518-523 ◽  
pp. 4387-4393
Author(s):  
Zhen Dong He ◽  
Jing Wan Liu ◽  
Chang Kai Shi

Electricity demand response is the lever of economy and contradictions between the supply and demand, is effective short-term instruments that speedy resolve contradictions between the supply and demand [1]. Put forward the elements and implementation principle of demand response programs, divide the type of demand response programs, investigate the time span relationship between demand response market and demand response programs, analyze demand response programs in the practice of domestic and foreign, discuss the application strategy of demand response in large public buildings systems and energy management platform, and for the construction of China's demand response programs raise suggestions and ideas.


Energy ◽  
2018 ◽  
Vol 160 ◽  
pp. 257-274 ◽  
Author(s):  
Alireza SoltaniNejad Farsangi ◽  
Shahrzad Hadayeghparast ◽  
Mehdi Mehdinejad ◽  
Heidarali Shayanfar

2020 ◽  
Vol 12 (22) ◽  
pp. 9686
Author(s):  
Bilal Naji Alhasnawi ◽  
Basil H. Jasim ◽  
Maria Dolores Esteban ◽  
Josep M. Guerrero

There will be a dearth of electrical energy in the world in the future due to exponential increase in electrical energy demand of rapidly growing world population. With the development of Internet of Things (IoT), more smart appliances will be integrated into homes in smart cities that actively participate in the electricity market by demand response programs to efficiently manage energy in order to meet this increasing energy demand. Thus, with this incitement, the energy management strategy using a price-based demand response program is developed for IoT-enabled residential buildings. We propose a new EMS for smart homes for IoT-enabled residential building smart devices by scheduling to minimize cost of electricity, alleviate peak-to-average ratio, correct power factor, automatic protective appliances, and maximize user comfort. In this method, every home appliance is interfaced with an IoT entity (a data acquisition module) with a specific IP address, which results in a wide wireless system of devices. There are two components of the proposed system: software and hardware. The hardware is composed of a base station unit (BSU) and many terminal units (TUs). The software comprises Wi-Fi network programming as well as system protocol. In this study, a message queue telemetry transportation (MQTT) broker was installed on the boards of BSU and TU. In this paper, we present a low-cost platform for the monitoring and helping decision making about different areas in a neighboring community for efficient management and maintenance, using information and communication technologies. The findings of the experiments demonstrated the feasibility and viability of the proposed method for energy management in various modes. The proposed method increases effective energy utilization, which in turn increases the sustainability of IoT-enabled homes in smart cities. The proposed strategy automatically responds to power factor correction, to protective home appliances, and to price-based demand response programs to combat the major problem of the demand response programs, which is the limitation of consumer’s knowledge to respond upon receiving demand response signals. The schedule controller proposed in this paper achieved an energy saving of 6.347 kWh real power per day, this paper achieved saving 7.282 kWh apparent power per day, and the proposed algorithm in our paper saved $2.3228388 per day.


Sign in / Sign up

Export Citation Format

Share Document