Simple Smart Algorithm for Flexibility of Dynamic Allocation in DHCP Server for SOHO Wireless Router

Author(s):  
Wahyul Amien Syafei ◽  
Yosua Alvin Adi Soetrisno ◽  
Agung Budi Prasetijo
2016 ◽  
Vol 2 (2) ◽  
Author(s):  
Amit Singh ◽  
Nitin Mishra ◽  
Angad Singh

 A Wireless Mobile Ad-hoc Network consists of variety of mobile nodes that temporally kind a dynamic infrastructure less network. To modify communication between nodes that don’t have direct radio contact, every node should operate as a wireless router and potential forward knowledge traffic of behalf of the opposite node. In MANET Localization is a fundamental problem. Current localization algorithm mainly focuses on checking the localizability of a network and/or how to localize as many nodes as possible. It could provide accurate position information foe kind of expanding application. Localization provide information about coverage, deployment, routing, location, services, target tracking and rescue If high mobility among the mobile nodes occurs path failure breaks. Hence the location information cannot be predicted. Here we have proposed a localization based algorithm which will help to provide information about the localized and non-localized nodes in a network. In the proposed approach DREAM protocol and AODV protocol are used to find the localizability of a node in a network. DREAM protocol is a location protocol which helps to find the location of a node in a network whereas AODV is a routing protocol it discover route as and when necessary it does not maintain route from every node to every other. To locate the mobile nodes in a n/w an node identification algorithm is used. With the help of this algorithm localized and non-localized node can be easily detected in respect of radio range. This method helps to improve the performance of a module and minimize the location error and achieves improved performance in the form of UDP packet loss, received packet and transmitted packets, throughput, routing overhead, packet delivery fraction. All the simulation done through the NS-2 module and tested the mobile ad-hoc network.


Author(s):  
Sangita Solanki ◽  
Raksha Upadhyay ◽  
Uma Rathore Bhatt

Cloud-integrated wireless optical broadband (CIW) access networks inheriting advantages of cloud computing, wireless and optical access networks have a broad prospect in the future. Due to failure of components like OLT level, ONU level, link or path failure and cloud component level in CIW, survivability is becoming one of the important issues. In this paper, we have presented cloud-integrated wireless-optical broadband access network with survivability using integer linear programming (ILP) model, to minimize the number of cloud components while providing maximum backup paths. Hence, we have proposed protection through cloud-integrated wireless router to available ONUs (PCIWRAO). So, evaluated the backup path computation. We have considered ONU level failure in which the affected traffic is transferred through wireless routers and cloud component to the available ONUs using Manhattan distance algorithm. Simulation results show different configurations for different number of routers and cloud components illustrating available backup path when ONU fails.


Author(s):  
Ayman Chouayakh ◽  
Aurélien Bechler ◽  
Isabel Amigo ◽  
Loutfi Nuaymi ◽  
Patrick Maillé

2011 ◽  
Vol 135-136 ◽  
pp. 781-787
Author(s):  
Yong Feng Ju ◽  
Hui Chen

This paper proposed a new Ad Hoc dynamic routing algorithm, which based on ant-colony algorithm in order to reasonably extend the dynamic allocation of network traffic and network lifetime. The Algorithm choose path according transmission latency, path of the energy rate, congestion rate, dynamic rate. The Algorithm update the routing table by dynamic collection of path information after path established. The analyse shows that algorithm increases the network throughput, reduces the average end-to-end packet transmission latency, and extends the network lifetime, achieves an improving performance.


Sign in / Sign up

Export Citation Format

Share Document