A novel saturated attitude controller for rigid body subject to bounded external disturbances

Author(s):  
Hu Jinchang ◽  
Zhang Honghua
Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


1993 ◽  
Vol 60 (4) ◽  
pp. 970-975 ◽  
Author(s):  
J. M. Longuski ◽  
P. Tsiotras

Analytic solutions are derived for the general attitude motion of a near-symmetric rigid body subject to time-varying torques in terms of certain integrals. A methodology is presented for evaluating these integrals in closed form. We consider the case of constant torque about the spin axis and of transverse torques expressed in terms of polynomial functions of time. For an axisymmetric body with constant axial torque, the resulting solutions of Euler’s equations of motion are exact. The analytic solutions for the Eulerian angles are approximate owing to a small angle assumption, but these apply to a wide variety of practical problems. The case when all three components of the external torque vector vary simultaneously with time is much more difficult and is treated in Part II.


2000 ◽  
Vol 122 (4) ◽  
pp. 669-673 ◽  
Author(s):  
T. Floquet ◽  
W. Perruquetti ◽  
J.-P. Barbot

This paper is devoted to the stabilization of the angular velocity of a rigid body via variable structure based controllers. The system is supposed to have only two control torques and to be subject to external disturbances. A finite time convergence is obtained by switching between a first-order and a second-order sliding mode controllers. [S0022-0434(00)00304-X]


Author(s):  
Andrei Craifaleanu ◽  
Cristian Dragomirescu ◽  
Iolanda-Gabriela Craifaleanu

2018 ◽  
Vol 30 (3) ◽  
pp. 380-389 ◽  
Author(s):  
Yasuaki Oda ◽  
Makoto Kumon ◽  
◽  

The controller parameters of a quadrotor helicopter have to be properly adjusted for the helicopter to fly stably, while considering the helicopter’s dynamics. Typically, there exists uncertainty in helicopter dynamics such as parametric uncertainty and unmodeled dynamics including external disturbances. To cope with uncertainty in the dynamics, it is effective to update controller parameters according to the performance during the flight. This paper proposes the introduction of a simple adaptive control (SAC), which is an adaptive control technique to augment the conventional attitude controller based on the PD controller to attenuate the effect of uncertainty. The introduction of a constraint to the adaptive gain is also proposed to suppress overshoot in the transient response. In this study, it was demonstrated through numerical simulations and experiments that the proposed controller was effective and that its performance was better in comparison to the original PD controller.


Sign in / Sign up

Export Citation Format

Share Document