Extended state observer based output feedback asymptotic tracking control of DC motors

Author(s):  
Deng Wenxiang ◽  
Luo Chengyang ◽  
Yao Jianyong ◽  
Ma Dawei ◽  
Le Guigao
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Meng Duan ◽  
Yingmin Jia

In this paper, the attitude tracking control problem of output feedback is investigated. A finite time extended state observer (FTESO) is designed through the homogeneous Lyapunov method to estimate the virtual angular velocity and total disturbances. Based on these estimated states, a finite time attitude tracking controller is developed. The numerical simulations are given to illustrate the effectiveness of the proposed control scheme.


Author(s):  
Kejie Gong ◽  
Ying Liao ◽  
Yafei Mei

This article proposed an extended state observer (ESO)–based output feedback control scheme for rigid spacecraft pose tracking without velocity feedback, which accounts for inertial uncertainties, external disturbances, and control input constraints. In this research, the 6-DOF tracking error dynamics is described by the exponential coordinates on SE(3). A novel continuous finite-time ESO is proposed to estimate the velocity information and the compound disturbance, and the estimations are utilized in the control law design. The ESO ensures a finite-time uniform ultimately bounded stability of the observation states, which is proved utilizing the homogeneity method. A non-singular finite-time terminal sliding mode controller based on super-twisting technology is proposed, which would drive spacecraft tracking the desired states. The other two observer-based controllers are also proposed for comparison. The superiorities of the proposed control scheme are demonstrated by theory analyses and numerical simulations.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142091177
Author(s):  
Jishu Guo ◽  
Junmei Guo ◽  
Zhongjun Xiao

In this article, a novel robust tracking control scheme based on linear extended state observer with estimation error compensation is proposed for the tracking control of the antagonistic variable stiffness actuator based on equivalent nonlinear torsion spring and the serial variable stiffness actuator based on lever mechanism. For the dynamic models of these two classes of variable stiffness actuators, considering the parametric uncertainties, the unknown friction torques acting on the driving units, the unknown external disturbances acting on the output links and the input saturation constraints, an integral chain pseudo-linear system with input saturation constraints and matched lumped disturbances is established by coordinate transformation. Subsequently, the matched lumped disturbances in the pseudo-linear system are extended to the new system states, and we obtain an extended integral chain pseudo-linear system. Then, we design the linear extended state observer to estimate the unknown states of the extended pseudo-linear system. Considering the input saturation constraints in the extended pseudo-linear system and the estimation errors of the linear extended state observer with fixed preset observation gains, the adaptive input saturation compensation laws and the novel estimation error compensators are designed. Finally, a robust tracking controller based on linear extended state observer, sliding mode control, adaptive input saturation compensation laws, and estimating error compensators is designed to achieve simultaneous position and stiffness tracking control of these two classes of variable stiffness actuators. Under the action of the designed controller, the semi-global uniformly ultimately bounded stability of the closed-loop system is proved by the stability analysis of the candidate Lyapunov function. The simulation results show the effectiveness, robustness, and adaptability of the designed controller in the tracking control of these two classes of variable stiffness actuators. Furthermore, the simulation comparisons show the effectiveness of the proposed estimation error compensation measures in reducing the tracking errors and improving the disturbance rejection performance of the controller.


Sign in / Sign up

Export Citation Format

Share Document