UUV dynamic path planning and trap escape strategies in unknown environment

Author(s):  
Xuelian Zhang ◽  
Hongjian Wang ◽  
Hongli Lv ◽  
Qing Li
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyun Lei ◽  
Zhian Zhang ◽  
Peifang Dong

Dynamic path planning of unknown environment has always been a challenge for mobile robots. In this paper, we apply double Q-network (DDQN) deep reinforcement learning proposed by DeepMind in 2016 to dynamic path planning of unknown environment. The reward and punishment function and the training method are designed for the instability of the training stage and the sparsity of the environment state space. In different training stages, we dynamically adjust the starting position and target position. With the updating of neural network and the increase of greedy rule probability, the local space searched by agent is expanded. Pygame module in PYTHON is used to establish dynamic environments. Considering lidar signal and local target position as the inputs, convolutional neural networks (CNNs) are used to generalize the environmental state. Q-learning algorithm enhances the ability of the dynamic obstacle avoidance and local planning of the agents in environment. The results show that, after training in different dynamic environments and testing in a new environment, the agent is able to reach the local target position successfully in unknown dynamic environment.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jianxin Feng ◽  
Jingze Zhang ◽  
Geng Zhang ◽  
Shuang Xie ◽  
Yuanming Ding ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 19632-19638
Author(s):  
Lisang Liu ◽  
Jinxin Yao ◽  
Dongwei He ◽  
Jian Chen ◽  
Jing Huang ◽  
...  

2011 ◽  
Vol 142 ◽  
pp. 12-15
Author(s):  
Ping Feng

The paper puts forward the dynamic path planning algorithm based on improving chaos genetic algorithm by using genetic algorithms and chaos search algorithm. In the practice of navigation, the algorithm can compute at the best path to meet the needs of the navigation in such a short period of planning time. Furthermore,this algorithm can replan a optimum path of the rest paths after the traffic condition in the sudden.


2021 ◽  
Vol 13 (6) ◽  
pp. 3194
Author(s):  
Fang Zong ◽  
Meng Zeng ◽  
Yang Cao ◽  
Yixuan Liu

Path planning is one of the most important aspects for ambulance driving. A local dynamic path planning method based on the potential field theory is presented in this paper. The potential field model includes two components—repulsive potential and attractive potential. Repulsive potential includes road potential, lane potential and obstacle potential. Considering the driving distinction between an ambulance and a regular vehicle, especially in congested traffic, an adaptive potential function for a lane line is constructed in association with traffic conditions. The attractive potential is constructed with target potential, lane-velocity potential and tailgating potential. The design of lane-velocity potential is to characterize the influence of velocity on other lanes so as to prevent unnecessary lane-changing behavior for the sake of time-efficiency. The results obtained from simulation demonstrate that the proposed method yields a good performance for ambulance driving in an urban area, which can provide support for designing an ambulance support system for the ambulance personnel and dispatcher.


Sign in / Sign up

Export Citation Format

Share Document