A prediction method of spatiotemporal series based on support vector regression model

Author(s):  
Wu Xu ◽  
He Binbin ◽  
Yang Xiao ◽  
Kan Aike ◽  
Cirenluobu
Author(s):  
Yumei Liu ◽  
Ningguo Qiao ◽  
Congcong Zhao ◽  
Jiaojiao Zhuang ◽  
Guangdong Tian

Accurate vibration time series modeling can mine the internal law of data and provide valuable references for reliability assessment. To improve the prediction accuracy, this study proposes a hybrid model – called the AR–SVR–CPSO hybrid model – that combines the auto regression (AR) and support vector regression (SVR) models, with the weights optimized by the chaotic particle swarm optimization (CPSO) algorithm. First, the auto regression model with the difference method is employed to model the vibration time series. Second, the support vector regression model with the phase space reconstruction is constructed for predicting the vibration time series once more. Finally, the predictions of the AR and SVR models are weighted and summed together, with the weights being optimized by the CPSO. In addition, the data collected from the reliability test platform of high-speed train transmission systems and the “NASA prognostics data repository” are used to validate the hybrid model. The experimental results demonstrate that the hybrid model proposed in this study outperforms the traditional AR and SVR models.


2020 ◽  
Vol 10 (19) ◽  
pp. 6648
Author(s):  
Gabriel Astudillo ◽  
Raúl Carrasco ◽  
Christian Fernández-Campusano ◽  
Máx Chacón

Predicting copper price is essential for making decisions that can affect companies and governments dependent on the copper mining industry. Copper prices follow a time series that is nonlinear and non-stationary, and that has periods that change as a result of potential growth, cyclical fluctuation and errors. Sometimes, the trend and cyclical components together are referred to as a trend-cycle. In order to make predictions, it is necessary to consider the different characteristics of a trend-cycle. In this paper, we study a copper price prediction method using support vector regression (SVR). This work explores the potential of the SVR with external recurrences to make predictions at 5, 10, 15, 20 and 30 days into the future in the copper closing price at the London Metal Exchange. The best model for each forecast interval is performed using a grid search and balanced cross-validation. In experiments on real data sets, our results obtained indicate that the parameters (C, ε, γ) of the model support vector regression do not differ between the different prediction intervals. Additionally, the amount of preceding values used to make the estimates does not vary according to the predicted interval. Results show that the support vector regression model has a lower prediction error and is more robust. Our results show that the presented model is able to predict copper price volatilities near reality, as the root-mean-square error (RMSE) was equal to or less than the 2.2% for prediction periods of 5 and 10 days.


Sign in / Sign up

Export Citation Format

Share Document