Structured Sparse Representation in Resting-State fMRI Image Processing for Mild Traumatic Brain Injury Analysis

Author(s):  
Na Li ◽  
Wenchang Zhang ◽  
SiYing Cheng ◽  
Yin Liu
2019 ◽  
Vol 36 (5) ◽  
pp. 650-660 ◽  
Author(s):  
Radhika Madhavan ◽  
Suresh E. Joel ◽  
Rakesh Mullick ◽  
Taylor Cogsil ◽  
Sumit N. Niogi ◽  
...  

Neuroreport ◽  
2018 ◽  
Vol 29 (16) ◽  
pp. 1413-1417 ◽  
Author(s):  
Natalie S. Dailey ◽  
Ryan Smith ◽  
John R. Vanuk ◽  
Adam C. Raikes ◽  
William D.S. Killgore

Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S26.2-S27
Author(s):  
Teena Shetty ◽  
Joseph Nguyen ◽  
Esther Kim ◽  
George Skulikidis ◽  
Matthew Garvey ◽  
...  

ObjectiveTo determine the utility of fractional amplitude of low frequency fluctuations (fALFF) during resting state fMRI (rs-fMRI) as an advanced neuroimaging biomarker for Mild Traumatic Brain Injury (mTBI).BackgroundmTBI is defined by a constellation of functional rather than structural deficits. As a measure of functional connectivity, fALFF has been implicated in long-term outcomes post-mTBI. It is unclear however, how longitudinal changes in fALFF may relate to the clinical presentation of mTBI.Design/Methods111 patients and 32 controls (15–50 years old) were enrolled acutely after mTBI and followed with up to 4 standardized serial assessments. Patients were enrolled at either Encounter 1 (E1), within 72 hours, or Encounter 2 (E2), 5–10 days post-injury, and returned for Encounter 3 (E3) at 15–29 days and Encounter 4 (E4) at 83–97 days. Each encounter included a clinical exam, neuropsychological assessment, as well as rs-fMRI imaging. fALFF was analyzed independently in 14 functional networks and, in grey and white matter as a function of symptom severity. Symptom severity scores (SSS) ranged from 0–132 as defined by the SCAT2 symptom evaluation.ResultsIn mTBI patients, fALFF scores across 5 functional brain networks (language, sensorimotor, visuospatial, higher-order visual, and posterior salience) differed between mTBI patients with low versus high SSS (SSS <5 and >30, respectively). Overall, greater SSS were indexed by reduced connectivity (p < 0.03, Bonferroni corrected). Further analysis also identified corresponding network pairs which were most predictive of increased SSS. White matter fALFF was not correlated with symptom severity, however, decreased grey matter fALFF was significantly correlated with greater SSS (r = −0.25, p = 0.002).ConclusionsGrey matter fALFF was correlated with mTBI symptom burden suggesting that patterns of neural connectivity relate directly to the clinical presentation of mTBI. Furthermore, differences in functional network connectivity as a function of SSS may reflect which networks are implicated in recovery of mTBI.


2015 ◽  
Vol 5 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Dominic E. Nathan ◽  
Terrence R. Oakes ◽  
Ping Hong Yeh ◽  
Louis M. French ◽  
Jamie F. Harper ◽  
...  

2016 ◽  
Vol 102 ◽  
pp. 1-11 ◽  
Author(s):  
Marios Antonakakis ◽  
Stavros I. Dimitriadis ◽  
Michalis Zervakis ◽  
Sifis Micheloyannis ◽  
Roozbeh Rezaie ◽  
...  

Author(s):  
Marios Antonakakis ◽  
Stavros I. Dimitriadis ◽  
Michalis Zervakis ◽  
Andrew C. Papanicolaou ◽  
George Zouridakis

2021 ◽  
Vol 17 ◽  
pp. 174480692110378
Author(s):  
Matthew Flowers ◽  
Albert Leung ◽  
Dawn M Schiehser ◽  
Valerie Metzger-Smith ◽  
Lisa Delano-Wood ◽  
...  

Emerging evidence suggests mild traumatic brain injury related headache (MTBI-HA) is a form of neuropathic pain state. Previous supraspinal mechanistic studies indicate patients with MTBI-HA demonstrate a dissociative state with diminished levels of supraspinal prefrontal pain modulatory functions and enhanced supraspinal sensory response to pain in comparison to healthy controls. However, the relationship between supraspinal pain modulatory functional deficit and severity of MTBI-HA is largely unknown. Understanding this relationship may provide enhanced levels of insight about MTBI-HA and facilitate the development of treatments. This study assessed pain related supraspinal resting states among MTBI-HA patients with various headache intensity phenotypes with comparisons to controls via functional magnetic resonance imaging (fMRI). Resting state fMRI data was analyzed with self-organizing-group-independent-component-analysis in three MTBI-HA intensity groups (mild, moderate, and severe) and one control group (n = 16 per group) within a pre-defined supraspinal pain network based on prior studies. In the mild-headache group, significant increases in supraspinal function were observed in the right premotor cortex (T = 3.53, p < 0.001) and the left premotor cortex (T = 3.99, p < 0.0001) when compared to the control group. In the moderate-headache group, a significant (T = −3.05, p < 0.01) decrease in resting state activity was observed in the left superior parietal cortex when compared to the mild-headache group. In the severe-headache group, significant decreases in resting state supraspinal activities in the right insula (T = −3.46, p < 0.001), right premotor cortex (T = −3.30, p < 0.01), left premotor cortex (T = −3.84, p < 0.001), and left parietal cortex (T = −3.94, p < 0.0001), and an increase in activity in the right secondary somatosensory cortex (T = 4.05, p < 0.0001) were observed when compared to the moderate-headache group. The results of the study suggest that the increase in MTBI-HA severity may be associated with an imbalance in the supraspinal pain network with decline in supraspinal pain modulatory function and enhancement of sensory/pain decoding.


Sign in / Sign up

Export Citation Format

Share Document