Classification of White Blood Cells by Convolution Neural Network in Lens-Free Imaging System

Author(s):  
Yuan Fang ◽  
Ningmei Yu ◽  
Yi Liu
2018 ◽  
Vol 21 (1) ◽  
pp. 65-80
Author(s):  
Amin Edraki ◽  
AbolHassan Razminia ◽  
◽  

2019 ◽  
Vol 16 (Special Issue) ◽  
Author(s):  
Ramin Nateghi ◽  
Mansoor Fatehi ◽  
Ali Sadeghitabar ◽  
Romana Khosravi ◽  
Fattane Pourakpour

White blood cell (Leukocytes) is made up of bone marrow located in the blood and lymph tissue. They are portion of the human body’s immune system, thereby helping the body system to fight against infection and other related diseases. The number of leukocytes in the blood is usually part of a complete blood cell (CBC) test, which may be used to check for conditions such as infection, inflammation, allergies, and leukemia. Automation of variance count of leukocytes offers valuable information to medical pathologist to diagnose and treat of many blood based diseases. Early characterization and classification of blood sample is a major lacuna in the medical field, giving rise to lots of challenges for pathologist to adequately predict blood based disease. Several successful efforts have been made to address the aforementioned challenges with the use of machine learning generally and Convolution Neural Network in particular. However the processor configuration which can result in real time, and accurate classification of the high dimensional pattern is imminent, and a vast number of researchers are not explicit on the system configuration used to obtain the result in their report, which is the crux of this research. In this research,12,500 augment images of blood cells was obtained from the Kaggle Repository online. The leukocytes are contained in the blood smear image and categorized into five major types of their types: Neutrophil, Eosinophil, Basophil, Lymphocyte and Monocyte. The color, geometric and texture features are used by the pathologists to differentiate the leukocytes. The Simulation was done using python programing language and python libraries including Keras, pandas, sklearn, numpy, scipy and matplot for potting of graphs of results. The simulation was done on both CPU and GPU processor to compare the performance of the processors on CNNs based classification of the data. While CPU has faster clock speed GPU has more cores. Hence the evaluation metrics used which are precision, specificity, sensitivity, training accuracy and validation accuracy revealed that GPU processor outperforms CPU in terms of the stated metrics of comparison. Therefore a high configuration processor (GPU), which handles graphics better is recommended for processing image data that involves the use of machine learning techniques


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 45993-45999
Author(s):  
Ung Yang ◽  
Seungwon Oh ◽  
Seung Gon Wi ◽  
Bok-Rye Lee ◽  
Sang-Hyun Lee ◽  
...  

2021 ◽  
Author(s):  
Eslam Tavakoli ◽  
Ali Ghaffari ◽  
Seyedeh-Zahra Mousavi Kouzehkanan ◽  
Reshad Hosseini

This article addresses a new method for classification of white blood cells (WBCs) using image processing techniques and machine learning methods. The proposed method consists of three steps: detecting the nucleus and cytoplasm, extracting features, and classification. At first, a new algorithm is designed to segment the nucleus. For the cytoplasm to be detected, only a part of it which is located inside the convex hull of the nucleus is involved in the process. This attitude helps us overcome the difficulties of segmenting the cytoplasm. In the second phase, three shape and four novel color features are devised and extracted. Finally, by using an SVM model, the WBCs are classified. The segmentation algorithm can detect the nucleus with a dice similarity coefficient of 0.9675. The proposed method can categorize WBCs in Raabin-WBC, LISC, and BCCD datasets with accuracies of 94.47 %, 92.21 %, and 94.20 %, respectively. It is worth mentioning that the hyperparameters of the classifier are fixed only with Raabin-WBC dataset, and these parameters are not readjusted for LISC and BCCD datasets. The obtained results demonstrate that the proposed method is robust, fast, and accurate.


Sign in / Sign up

Export Citation Format

Share Document